Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1)
70:2=35(m)
Gọi a và b lần lượt là chiều rộng và chiều dài của miếng đất
Từ b/a = 4 /3 = > 3/a = 4 /b
= > 3/ a = 4/ b = 3 + 4/ a + b = 7/ 35 = 5 /3 a = 5
= > a = 3.5 = 15/ 4 b = 5
= > b = 5.4 = 20
Vậy diện tích miếng đất đó là:
15.20=300(m2)
2) Bài 138 (Sách bài tập - tập 1 - trang 33)
bài 2 cậu vào cái ý là có
B1 :
\(\frac{x}{3}=\frac{y}{6}=\frac{xy}{3\times6}=\frac{162}{18}=9\)
---> x = 3.9 = 27
---> y = 6.9 = 54
B2 :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{xyz}{2\times3\times5}=\frac{-240}{30}=-8\)
---> x = -8.2 = -16
---> y = -8.3 = -24
---> z = -8.5 = -40
xin tiick
\(\frac{6a}{11}=\frac{9b}{2}=\frac{18c}{5}\)
nhân cho \(\frac{1}{108}\)
Áp dung dãy tỉ số bằng nhau=>\(=\frac{5}{6}\)
\(\Rightarrow A=165\)
\(\Rightarrow B=20\)
\(\Rightarrow C=25\)
đúng thì
\(\Rightarrow\frac{6a}{11}=\frac{9b}{2}=\frac{18c}{5}\Rightarrow\frac{a}{\frac{11}{6}}=\frac{b}{\frac{2}{9}}=\frac{c}{\frac{5}{18}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{\frac{11}{6}}=\frac{b}{\frac{2}{9}}=\frac{c}{\frac{5}{18}}=\frac{b-a+c}{\frac{2}{9}-\frac{6}{11}+\frac{5}{18}}=\frac{-120}{-\frac{1}{22}}=2640\)
\(\Rightarrow\frac{a}{\frac{11}{6}}=2640\Rightarrow a=2640\cdot\frac{11}{6}=4840\)
\(\Rightarrow\frac{b}{\frac{2}{9}}=2640\Rightarrow b=2640\cdot\frac{2}{9}=\frac{1760}{3}\)
\(\Rightarrow\frac{c}{\frac{5}{18}}=2640\Rightarrow c=2640\cdot\frac{5}{18}=\frac{2200}{3}\)
Ta có:\(\frac{a}{b}=\frac{9}{7}\Rightarrow\frac{a}{9}=\frac{b}{7}\left(1\right)\)
\(\frac{b}{c}=\frac{7}{3}\Rightarrow\frac{b}{7}=\frac{c}{3}\left(2\right)\)
Từ (1) và (2) suy ra được:\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số = nhau ta đc:
\(\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=\frac{15}{1}=15\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{9}=15\\\frac{b}{7}=15\\\frac{c}{3}=15\end{cases}\Rightarrow}\hept{\begin{cases}a=135\\b=105\\c=45\end{cases}}\)
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=-1\)
\(\Rightarrow\frac{2x}{6}=-1\Rightarrow2x=-6\Rightarrow x=-3\)
\(\Rightarrow\frac{3y}{15}=-1\Rightarrow3y=-15\Rightarrow y=-5\)
\(\Rightarrow\frac{z}{7}=-1\Rightarrow z=-7\)
theo đề ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = -14
=> \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng t/c DTSBN ta có:
\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=\frac{-14}{14}\) = \(-1\)
=> \(\frac{x}{3}=-1=>x=-3\)
\(\frac{y}{5}=-1=>y=-5\)
\(\frac{z}{7}=-1=>z=-7\)
t i c k nha!! 4354565475677687978873535752456465465765786876897978
Dựa theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)
Rút gọn đi, ta có:
\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)
Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)
Kết luận: .....
Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)
\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)
Có: \(x+y+z=49\)
\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)
\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)
\(k.\frac{49}{12}=49\)
\(\Rightarrow k=12\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)
Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Tham khảo nhé~
Vì mọi phân số có mẫu =0 ko tồn tại <-- định lý này chắc hơn dãy tỉ số = nhau nhiều @@
Theo mình nghĩ là do các phân sô như đã nêu không có tỉ lệ thuận với nhau (không có đại lượng rõ ràng)
ko dc nha bn
thanks bn nhìu nha