Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) - 2); B) - 5); C) - 4); D) - 3)
(Lưu ý: B có thể nối với 2) hoặc với 4).
a) \(f\left(1\right)=a.1^2+b.1+c\)
\(=a+b+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(\Rightarrow f\left(1\right)+f\left(-2\right)=a+b+c+5a-2b+c\)
\(=5a-b+2c=0\)
\(\Rightarrow f\left(1\right)=-f\left(-2\right)\)
\(\Rightarrow f\left(1\right).f\left(-2\right)\le0\)
b) Thay a=1 ; b=2 ; c=3 vào đa thức f(x) ta được
\(f\left(x\right)=x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\forall x\)
Vậy đa thức f(x) vô nghiệm
\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)
\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)
\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
Chúc bạn học tốt ~
Ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (do \(x+y+z\ne0\))
\(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Leftrightarrow x=y=z\)
Thay \(x=y=z\) vào \(N=\frac{x^{123}.y^{456}}{z^{579}}\), ta có :
\(N=\frac{x^{123}.x^{456}}{x^{579}}\)
\(\Leftrightarrow\frac{x^{579}}{x^{579}}=1\)
Vậy N = 1
tìm hết các gt của x giúp mn nha.thanks