K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

không biết. cộng trừ thì đổi từ lũy thừa ra STN chứ mình chưa biết đến công 2 lũy thừa. giải pháp tốt nhất là dùng máy tính bạn ơi

21 tháng 12 2016

Ta giữ nguyên cơ số, lấy số mũ công hoặc trừ 

tk mik nha

thanks ^^

4 tháng 12 2023

Cộng 2 lũy thừa cùng số mũ và khác cơ số thì không có công thức chung nào em nhé.

26 tháng 10 2016

3
\(x^m.x^n=x^{m+n}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.y^m=\left(x.y\right)^m\)
\(x^m:y^m=\left(\frac{x}{y}\right)^m\)

26 tháng 10 2016

2, Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiện \(^{x^n}\), là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)

27 tháng 10 2016

1. Viết công thức:

- Nhân hai lũy thừa cùng cơ số: tổng 2 số mũ

xm . xn = xm+n

- Chia hai lũy thừa cùng cơ số: hiệu 2 số mũ

xm : xn = xm - n (x # 0, lớn hơn hoặc bằng n)

- Lũy thừa của 1 lũy thừa: Tích 2 số mũ

(xm )n = xm.n

- Lũy thừa của một tích: tích các lũy thừa

(x . y)n = xn . yn

- Lũy thừa của một thương: thương các lũy thừa

2. Thế nào là tỉ số của hai số hữu tỉ ? Cho ví dụ

- Số hữu tỉ là số viết đc dưới dạng phân số \(\frac{a}{b}\)

Vd: \(\frac{3}{4}\); 18

27 tháng 10 2016

cảm ơn bạn nhé

 

26 tháng 10 2015

\(x^m:x^n=x^{m-n}\)

\(x^m.x^n=x^{m+n}\)

\(\left(x^m\right)^n=x^{m.n}\)

 

19 tháng 4 2017

Các công thức lần lượt là:
\(a^m.a^n=a^{m+n}\)
\(a^m:a^n=a^{m-n}\)
\(\left(a^m\right)^n=a^{m.n}\)
\(\left(m.n\right)^a=m^a.n^a\)
\(\left(\dfrac{m}{n}\right)^a=\dfrac{m^a}{n^a}\)

12 tháng 11 2017

Lần lượt :

a) am.an = am+n

b) am : an = am-n (m≥n , a≠0)

c) (an)m = am.n

d) (a.b)m = am.bm

e- (\(\dfrac{a}{b}\))m = \(\dfrac{^{a^m}}{b^m}\)

18 tháng 1 2016

đổi lũy thừa thành số hạng rùi cộng tông 

9 tháng 10 2021

\(x^m\cdot x^n=x^{m+n}\left(m,n\in N\right)\\ x^m:x^n=x^{m-n}\left(m>n;m,n\in N\right)\\ \left(x^m\right)^n=x^{m\cdot n}\)

4 tháng 10 2021

\(a^m\cdot a^n=a^{m+n}\left(m,n\in N\right)\\ a^m:a^n=a^{m-n}\left(m>n;m,n\in N\right)\)

4 tháng 10 2021

am . an = am + n

am : an = am : n

(am)n = am . n