K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2022

Tham khảo: Phương trình Diophantine (tiếng Anh: diophantine equation), phương trình Đi-ô-phăng hay phương trình nghiệm nguyên bất định có dạng: f(x1;x2;x3;...;xn)=0 (*) Z thỏa (*) được gọi là một nghiệm nguyên của phương trình. Một phương trình có một hoặc nhiều cách giải gọi là phương trình có thể giải quyết được.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.

Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.

Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$

Do đó, khi gặp phải pt:

$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:

$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$

$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$

Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:

TH1: $x\geq 1$

TH2: $-1\leq x< 1$

TH3: $x< -1$

31 tháng 7 2021

Em cảm ơn chị nhiều ạ!! 

lấy tạm 1 ví dụ thôi nhé!

Giải phương trình \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}=x^3+10\)

ĐK: \(1\le x\le3\)

\(\sqrt{x-1}=\frac{1}{2}.2.1.\sqrt{x-1}\le\frac{1}{2}\left(1+x-1\right)=\frac{1}{2}.x\)    ( Cô - si )

\(\sqrt{3-x}=\frac{1}{2}.2.1.\sqrt{3-x}\le\frac{1}{2}\left(1+3-x\right)=2-\frac{1}{2}x\)

\(4x\sqrt{2x}=2.2.\sqrt{2}.\sqrt{x^3}\le8+x^3\)

\(\Rightarrow\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\le x^3+10\)

Dấu "=" khi \(\hept{\begin{cases}1=\sqrt{x-1}\\1=\sqrt{3-x}\\2\sqrt{2}=\sqrt{x^3}\end{cases}\Leftrightarrow x=2}\left(tmđk\right)\)

31 tháng 7 2021

Trong toán học, một tập hợp hữu hạn là một tập hợp có một số hữu hạn các phần tử. Một cách không chính thức, một tập hữu hạn là một tập hợp mà có thể đếm và có thể kết thúc việc đếm. Ví dụ,

là một tập hợp hữu hạn có 5 phần tử. Số phần tử của một tập hợp hữu hạn là một số tự nhiên (một số nguyên không âm) và được gọi là lực lượng của tập hợp đó. Một tập hợp mà không hữu hạn được gọi là tập hợp vô hạn. Ví dụ, tập hợp tất cả các số nguyên dương là vô hạn:

Tập hợp hữu hạn đặc biệt quan trọng trong toán học tổ hợp, môn toán học nghiên cứu về phép đếm. Nhiều bài toán liên quan đến các tập hữu hạn dựa vào nguyên lý ngăn kéo Dirichlet, chỉ ra rằng không thể tồn tại một đơn ánh từ một tập hợp hữu hạn lớn hơn vào một tập hợp hữu hạn nhỏ hơn.

31 tháng 7 2021

coppy mình không hieerur đâu 

7 tháng 6 2018

phương trình bậc 2

7 tháng 6 2018

Bạn giải phương trinh này giúp mình nhé

Phương trình:  100/x + 100/x + 10 + 25/3 = 12

Giải dễ hiểu và nói cả cách làm nhé

14 tháng 7 2021

\(\sqrt{f\left(x\right)}=\sqrt{g\left(x\right)}\left(ĐK:\left[{}\begin{matrix}f\left(x\right)\ge0\\g\left(x\right)\ge0\end{matrix}\right.\right)\\ \Leftrightarrow f\left(x\right)=g\left(x\right)\)

Trong ví dụ \(\sqrt{16x}=\sqrt{81}\), trước khi bình phương 2 vế để phá dấu căn thì bạn cần ghi điều kiện \(16x\ge0\Leftrightarrow x\ge0\) nhé.

14 tháng 7 2021

Bạn ơi vậy là được ạ bạn