Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17 =1+16
nhóm thành 5 cặp, (4 +43)+ (42+44)+...; mỗi cặp đều chia hết cho 17
A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)
A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)
A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)
A= 21 + 4^3.21 + ...+ 4^57.21
A = 21.(1+4^3+...+4^57) chia hết cho 21
phần b đề là j z bn
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=1.21+4^3.21+...+4^57.21
A=(1+4^3+...+4^57).21
Vậy A chia hết cho 21
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)
A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)
A=5+42.5+...+448.5A=5+42.5+...+448.5
A=5(1+42+...+448)A=5(1+42+...+448)
⇒A⋮5
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
k cho mik đi mik cảm ơn
Làm mẫu 1 cái thôi nhé
Ta có: \(A=1+4+4^2+4^3+...+4^{59}\)
\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\left(1+4^2+...+4^{58}\right)\) chia hết 5
Tương tự nhé