K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

M=1+  3^100/1+3+3^2+..+3^99

=1+1:   1+3+3^2+...+3^99/3^100

=1+1:(1/3^100+1/3^99+..+1/3)

tương tự ta có

N=1+1:         (1/5^100+1/5^99+......+1/5)

do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3

=M<N

30 tháng 5 2015

M=1+  3^100/1+3+3^2+..+3^99

=1+1:   1+3+3^2+...+3^99/3^100

=1+1:(1/3^100+1/3^99+..+1/3)

tương tự ta có

N=1+1:         (1/5^100+1/5^99+......+1/5)

do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3

=M<N

23 tháng 3 2015

bạn giải ra hộ mình nhé !

24 tháng 3 2015

a) M>N

b)M*N=1/101

c)bỏ cuộc 

22 tháng 1 2018

M=(1.3.5.7.....99)/(2.4.6.8.....100)

số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500

số số hạng của mẫu =  (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550

-->  M= 2500/2550 =50/51

Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N

22 tháng 1 2018

bấm phân số kiểu j z bạn

12 tháng 5 2018

Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)

12 tháng 5 2018

Ta có : \(\frac{1}{2}< \frac{2}{3}\)\(\frac{3}{4}< \frac{4}{5}\)\(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N

b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)

c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)

\(\Rightarrow M< \frac{1}{10}\)

8 tháng 7 2016

Ta có:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

\(...\)

\(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(\Rightarrow M< N\)