K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Đường thẳng d đi qua A (1; 1; 9) và có vectơ chỉ phương \(\overrightarrow{a}\left(1;1;0\right)\). Gọi (Q) là mặt phẳng đi qua d và vuông góc với (P)

Ôn tập chương III

3 tháng 9 2023

Để tính cos(Δ1;Δ2), ta cần tìm vector chỉ phương của hai đường thẳng Δ1 và Δ2.

Vector chỉ phương của đường thẳng d là (1, t, 2) và vector chỉ phương của đường thẳng d' là (-1, 1, -2).

Để tìm vector chỉ phương của mặt phẳng (P), ta lấy vector pháp tuyến của mặt phẳng. Ta có vector pháp tuyến của mặt phẳng (P) là (1, 1, -1).

Để hai đường thẳng Δ1 và Δ2 song song với mặt phẳng (P), ta có điều kiện là vector chỉ phương của Δ1 và Δ2 cũng phải song song với vector pháp tuyến của mặt phẳng (P). Vì vậy, ta cần tìm vector chỉ phương của Δ1 và Δ2 sao cho chúng song song với vector (1, 1, -1).

Ta có thể tìm vector chỉ phương của Δ1 và Δ2 bằng cách lấy tích vector của vector chỉ phương của d hoặc d' với vector pháp tuyến của mặt phẳng (P).

Tính tích vector của (1, t, 2) và (1, 1, -1): (1, t, 2) x (1, 1, -1) = (t-3, 3t+1, -t-1)

Tính tích vector của (-1, 1, -2) và (1, 1, -1): (-1, 1, -2) x (1, 1, -1) = (-1, -3, -2)

Hai vector trên là vector chỉ phương của Δ1 và Δ2. Để tính cos(Δ1;Δ2), ta sử dụng công thức:

cos(Δ1;Δ2) = (Δ1.Δ2) / (|Δ1|.|Δ2|)

Trong đó, Δ1.Δ2 là tích vô hướng của hai vector chỉ phương, |Δ1| và |Δ2| là độ dài của hai vector chỉ phương.

Tính tích vô hướng Δ1.Δ2: (t-3)(-1) + (3t+1)(-3) + (-t-1)(-2) = -t-3

Tính độ dài của Δ1: |Δ1| = √[(t-3)² + (3t+1)² + (-t-1)²] = √[11t² + 2t + 11]

Tính độ dài của Δ2: |Δ2| = √[(-1)² + (-3)² + (-2)²] = √[14]

Vậy, cos(Δ1;Δ2) = (-t-3) / (√[11t² + 2t + 11] * √[14])

Để tính giá trị của cos(Δ1;Δ2), ta cần biết giá trị của t. Tuy nhiên, trong câu hỏi không cung cấp giá trị cụ thể của t nên không thể tính được giá trị chính xác của cos(Δ1;Δ2).

3 tháng 4 2017

a) Xét mặt phẳng (P) đi qua d và (P) ⊥ (Oxy), khi đó ∆ = (P) ∩ (Oxy) chính là hình chiếu vuông góc của d lên mặt phẳng (Oxy).

Phương trình mặt phẳng (Oxy) có dạng: z = 0 ; vectơ (0 ; 0 ;1) là vectơ pháp tuyến của (Oxy), khi đó ( 1 ; 2 ; 3) là cặp vectơ chỉ phương của mặt phẳng (P).

= (2 ; -1 ; 0) là vectơ pháp tuyến của (P).

Phương trình mặt phẳng (P) có dạng:

2(x - 2) - (y + 3) +0.(z - 1) = 0

hay 2x - y - 7 = 0.

Đường thẳng hình chiếu ∆ thỏa mãn hệ:

Điểm M0( 4 ; 1 ; 0) ∈ ∆ ; vectơ chỉ phương của ∆ vuông góc với và vuông góc với , vậy có thể lấy = (1 ; 2 ; 0).

Phương trình tham số của hình chiếu ∆ có dạng:

.

Chú ý :

Ta có thể giải bài toán này bằng cách sau:

Lấy hai điểm trên d và tìm hình chiếu vuông góc của nó trên mặt phẳng (Oxy). Đường thẳng đi qua hai điểm đó chính là hình chiếu cần tìm.

Chẳng hạn lấy M1( 2 ; 3 ; -1) ∈ d và M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của

M1 trên (Oxy) là N1 (2 ; -3 ; 0), hình chiếu vuông góc của M2 trên (Oxy) là N2(0 ; -7 ; 0).

Đườn thẳng ∆ qua N1, N­2 chính là hình chiếu vuông góc của d lên (Oxy).

Ta có : (-2 ; -4 ; 0) // (1 ; 2 ; 0).

Phương trình tham số của ∆ có dạng:

.

b) Tương tự phần a), mặt phẳng (Oxy) có phương trình x = 0.

lấy M1( 2 ; 3 ; -1) ∈ d và M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của

M1 trên (Oxy) là M'1 (0 ; -3 ; 1), hình chiếu vuông góc của M2 trên (Oyz) là chính nó.

Đườn thẳng ∆ qua M'1, M­2 chính là hình chiếu vuông góc của d lên (Oyz).

Ta có: (0 ; -4 ; -6) // (0 ; 2 ; 3).

Phương trình M'12 có dạng:

.


28 tháng 8 2017

Đường thẳng d đi qua A(1; 1; 9) và có vecto chỉ phương  a → (1; 1; 0). Gọi (Q) là mặt phẳng đi qua d và vuông góc với (P).

Ta có:  n Q → = a → ∧ n P →  = (−2; 2; 1)

Phương trình của (Q) là : -2x + 2y + z – 9 = 0

Khi đó: d′ = (P) ∩ (Q)

Ta có:  n P → ∧ n Q →  = (6; 3; 6)

Chọn vecto chỉ phương của d’ là:  n a ' →  = (2; 1; 2)

Lấy một điểm thuộc (P) ∩ (Q), chẳng hạn A(-3; 1; 1)

Khi đó, phương trình của d’ là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\)Ôn tập cuối năm môn hình học 12

Chọn D