K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có:

\(\left. \begin{array}{l}d \subset \left( {AMNC} \right)\\d\parallel \left( \alpha  \right)\\\left( \alpha  \right) \cap \left( {AMNC} \right) = AC\end{array} \right\} \Rightarrow d\parallel AC \Rightarrow MN\parallel AC\)

Mà \(a\parallel NC \Rightarrow MA\parallel NC\)

\( \Rightarrow AMNC\) là hình bình hành.

b) Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(b\) và song song với \(a\), \(c = \left( \alpha  \right) \cap \left( \beta  \right)\)

Ta có:

\(\left. \begin{array}{l}NC\parallel a\\N \in b\end{array} \right\} \Rightarrow NC \subset \left( \beta  \right)\)

\( \Rightarrow C \in \left( \alpha  \right) \cap \left( \beta  \right) \Rightarrow C \in c\)

Vậy điểm \(C\) luôn luôn chạy trên đường thẳng \(c\) là giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cố định.

c) Trong mặt phẳng \(\left( \alpha  \right)\), kẻ \(AH \bot c\)

Vì \(c\) cố định nên \(AC \ge AH\)

\(AMNC\) là hình bình hành \( \Rightarrow MN = AC\)

Vậy \(MN \ge AH\)

Vậy \(MN\) nhỏ nhất khi \(C \equiv H\). Khi đó \(d\parallel AH\).

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì \(O \in \left( \alpha  \right)\) nên \(O\) là hình chiếu của chính nó lên mặt phẳng \(\left( \alpha  \right)\) theo phương \(d\).

Vì ba điểm \(O,A,B\) thẳng hàng nên ba điểm \(O,A',B'\) thẳng hàng.

\(AA'\parallel BB' \Rightarrow \frac{{AB}}{{OA}} = \frac{{A'B'}}{{OA'}} \Leftrightarrow \frac{{A'B'}}{{AB}} = \frac{{OA'}}{{OA}}\)

a) Để \(A'B' = AB\) thì \(OA' = OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = OA\).

b) Để \(A'B' = 2AB\) thì \(OA' = 2OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = 2OA\).

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\), \(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\) a) Chứng...
Đọc tiếp

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\)\(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\)

a) Chứng minh rằng \(M_1M_2\) luon luôn đi qua một điểm cố định

b) Giả sử đường thẳng \(M_1M_2\) cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng 

c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left(\beta\right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm \(M_1\) và \(M_2\) di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left(\alpha\right)\)

1
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Gọi (R) là mặt phẳng chứa a và (R)//(Q)

(Q)//(R)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(\left(P\right)\cap\left(R\right)=a\)

Do đó: a//a'

mà IJ vuông góc a

nên JI vuông góc a'

\(\left(P\right)\perp\left(Q\right)\)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(JI\perp a\)

Do đó: JI vuông góc (Q)

=>IJ vuông góc b

21 tháng 8 2023

tham khảo:

Gọi (R) là mặt phẳng chứa a song song với (Q).

(P) cắt hai mặt phẳng song song tại a và a' nên a//a'

Trong mặt phẳng (P), IJ⊥a,a//a′ nên IJ⊥a′
Ta có: (P)⊥(Q), (P) cắt (Q) tại a', IJ⊥a′ nên IJ⊥(P)
Suy ra IJ⊥b
 

31 tháng 3 2017

a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'

=> OO'// d // b mà O BD mp (b;d)

=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm

b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC} \right)\\PQ = \left( \alpha  \right) \cap \left( {BC{\rm{D}}} \right)\\BC = \left( {ABC} \right) \cap \left( {BC{\rm{D}}} \right)\\MN\parallel BC\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel PQ\parallel BC\) (1).

\(\begin{array}{l}MQ = \left( \alpha  \right) \cap \left( {ABD} \right)\\NP = \left( \alpha  \right) \cap \left( {AC{\rm{D}}} \right)\\A{\rm{D}} = \left( {ABD} \right) \cap \left( {AC{\rm{D}}} \right)\\MQ\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MQ\parallel NP\parallel A{\rm{D}}\) (2).

Từ (1) và (2) suy ra \(MNPQ\) là hình bình hành.

b) Để \(MNPQ\) là hình thoi thì \(MN = NP\).

Ta có:

\(\begin{array}{l}MN\parallel BC \Rightarrow \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\\NP\parallel A{\rm{D}} \Rightarrow \frac{{NP}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}} \Rightarrow \frac{{MN}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}}\end{array}\)

Ta có:

\(\begin{array}{l}\frac{{AN}}{{AC}} + \frac{{CN}}{{AC}} = 1 \Leftrightarrow \frac{{MN}}{{BC}} + \frac{{MN}}{{A{\rm{D}}}} = 1 \Leftrightarrow MN.\left( {\frac{1}{{BC}} + \frac{1}{{A{\rm{D}}}}} \right) = 1\\ \Leftrightarrow MN.\frac{{BC + A{\rm{D}}}}{{BC.A{\rm{D}}}} = 1 \Leftrightarrow MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\end{array}\)

Vậy nếu \(MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\) thì \(MNPQ\) là hình thoi.

31 tháng 3 2017

a) (α) // AC, AC ∈(ABC), M là điểm chung của ( α) và (ABC) => (α) ∩ (ABC) = MN // AC. Các giao tuyến sau tương tự

b) Thiết diện là hình bình hành MNPQ

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc