Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi (β) là mặt phẳng xác định bởi hai đường thẳng AB và Ax
Do Ax // (α) nên (β) sẽ cắt (α) theo giao tuyến Bx’ song song với Ax.
Ta có M’ là điểm chung của (α) và (β) nên M’ thuộc Bx’.
Khi M trùng A thì M’ trùng B nên tập hợp M’ là tia Bx’.
Ta có tứ giác ABM’M là hình bình hành nên BM’ = AM = BN.
Tam giác BM’N cân tại B.
Suy ra trung điểm I của cạnh đáy NM’ thuộc phân giác trong Bt của góc B trong tam giác cân BNM’. Dễ thấy rằng Bt cố định.
Gọi O là trung điểm của AB. Trong mặt phẳng (AB, Bt), tứ giác OBIJ là hình bình hành nên I J → = B O → . Do đó I là ảnh của J trong phép tịnh tiến theo vectơ B O → . Vậy tập hợp I là tia Ot’ song song với Bt.
Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.
a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.
Do đó ΔOMP = ΔOMN (c.c.c)
⇒ OA = OH nên OH = a.
Ta suy ra HM = AM và HN = BN.
b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:
HK // MM’ với K ∈ NM’.
Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .
c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)
Nghĩ ra hướng làm rồi cơ mà giờ "bỗng dưng bận" nên để lát nữa tui "múa bút" nhó ahehe :3
Mà viết thử hướng làm cho bà nghĩ coi sao.
Phần bài ũy tích thì sẽ chứng minh theo 2 phần là phần đảo và phần thuận
Phần thuân: Có I là trung điểm MN thì chứng minh khi M, N di động thì I sẽ di động trên đường thẳng HK (H là TD AB, K là trung điểm FC)
Phần đảo: Có I thuộc HK, chứng minh tồn tại 2 điểm M thuộc AC, N thuộc BF sao cho AM=BN và nhận I làm trung điểm MN
Đó, nghĩ thử đi đã :3
a) Ta có:
\(\begin{array}{l}MN = \left( \alpha \right) \cap \left( {ABC} \right)\\PQ = \left( \alpha \right) \cap \left( {BC{\rm{D}}} \right)\\BC = \left( {ABC} \right) \cap \left( {BC{\rm{D}}} \right)\\MN\parallel BC\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel PQ\parallel BC\) (1).
\(\begin{array}{l}MQ = \left( \alpha \right) \cap \left( {ABD} \right)\\NP = \left( \alpha \right) \cap \left( {AC{\rm{D}}} \right)\\A{\rm{D}} = \left( {ABD} \right) \cap \left( {AC{\rm{D}}} \right)\\MQ\parallel A{\rm{D}}\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MQ\parallel NP\parallel A{\rm{D}}\) (2).
Từ (1) và (2) suy ra \(MNPQ\) là hình bình hành.
b) Để \(MNPQ\) là hình thoi thì \(MN = NP\).
Ta có:
\(\begin{array}{l}MN\parallel BC \Rightarrow \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\\NP\parallel A{\rm{D}} \Rightarrow \frac{{NP}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}} \Rightarrow \frac{{MN}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}}\end{array}\)
Ta có:
\(\begin{array}{l}\frac{{AN}}{{AC}} + \frac{{CN}}{{AC}} = 1 \Leftrightarrow \frac{{MN}}{{BC}} + \frac{{MN}}{{A{\rm{D}}}} = 1 \Leftrightarrow MN.\left( {\frac{1}{{BC}} + \frac{1}{{A{\rm{D}}}}} \right) = 1\\ \Leftrightarrow MN.\frac{{BC + A{\rm{D}}}}{{BC.A{\rm{D}}}} = 1 \Leftrightarrow MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\end{array}\)
Vậy nếu \(MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\) thì \(MNPQ\) là hình thoi.
a)
⇒ (α) ∩ (ABC) = MN và MN // AB
Ta có N ∈ (BCD) và
Nên ⇒ (α) ∩ (BCD) = NP và NP // CD
Ta có P ∈ (ABD)
Và nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB
nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD
Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.
b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.
Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.
Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.
Vì MNPQ là hình bình hành nên ta có
EF // MN ⇒ EF // AB
Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J
⇒ I, O, J thẳng hàng
⇒ O ∈ IJ cố định.
Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .
Vậy tập hợp các điểm O là đoạn IJ.
Vì \(O \in \left( \alpha \right)\) nên \(O\) là hình chiếu của chính nó lên mặt phẳng \(\left( \alpha \right)\) theo phương \(d\).
Vì ba điểm \(O,A,B\) thẳng hàng nên ba điểm \(O,A',B'\) thẳng hàng.
\(AA'\parallel BB' \Rightarrow \frac{{AB}}{{OA}} = \frac{{A'B'}}{{OA'}} \Leftrightarrow \frac{{A'B'}}{{AB}} = \frac{{OA'}}{{OA}}\)
a) Để \(A'B' = AB\) thì \(OA' = OA\).
Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = OA\).
b) Để \(A'B' = 2AB\) thì \(OA' = 2OA\).
Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = 2OA\).