Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tiếp nè
Do \(R_{12}//R_3\)
\(\Rightarrow U_{12}=U_3=U_{123}=\frac{48a}{7}\left(V\right)\)
\(\rightarrow I_3=\frac{U_3}{R_3}=\frac{\frac{48a}{7}}{4a}=\frac{12}{7}\left(A\right)\)
\(\rightarrow I_{12}=\frac{U_{12}}{R_{12}}=\frac{\frac{48a}{7}}{3a}=\frac{16}{7}\left(A\right)\)
Do \(R_1ntR_2\)
\(\Rightarrow I_1=I_2=I_{12}=\frac{16}{7}\left(A\right)\)
Vậy:
\(I_4=4\left(A\right)\)
\(I_3=\frac{12}{7}\left(A\right)\)
\(I_1=I_2=\frac{16}{7}\left(A\right)\)
Ta có : [(R\(_1\) nt R\(_2\) ) \(//\) R\(_3\) ] nt R\(_4\)
\(\Rightarrow\) R\(_{12}\) = R\(_1\) + R\(_2\) = a+2a = 3a (\(\Omega\) )
\(\Rightarrow R_{234}=\frac{R_{12}.R_3}{R_{12}+R_3}=\frac{3a.4a}{3a+4a}=\frac{12a^2}{7a}=\frac{12a}{7}\left(\Omega\right)\)
\(\Rightarrow R_{td}=R_{123}+R_4=\frac{12a}{7}+a=\frac{19a}{7}\left(\Omega\right)\)
Do \(R_{123}ntR_4\)
\(\Rightarrow I_{123}=I_4=I=4\left(A\right)\)
\(\Rightarrow U_{123}=I_{123}.R_{123}=\frac{12a}{7}.4=\frac{48a}{7}\left(V\right)\)
Do
\(=>R1ntR2ntR3=>Rtd=R1+R2+R3=3R1+R2\left(om\right)\)
\(=>RTd=\dfrac{12}{0,5}=24\left(om\right)\)
\(=>3R1+R2=24=>R2=24-3R1\)
\(I=I1=I2=I3=0,5A\)
\(=>3U1=U2\)\(=>3.0,5.R1=R2.0,5=>3R1=R2=>3R1=24-3R1=>R1=4\left(om\right)\)
\(=>R2=24-3R1=12\left(om\right)\)
\(=>R3=2R1=8\left(om\right)\)
\(=>U1=0,5.R1=2V\)
\(=>U2=0,5.R2=6V\)
\(=>U3=0,5.8=4V\)
Ta có :R12=R1+R2=10+10=20\(\Omega\)
Có :(R1nt R2)//R3 :
\(\Rightarrow\)R123=\(\frac{R_{12}.R_3}{R_{12}+R_3}=\frac{20.5}{20+5}=4\Omega\)
Có : R4nt(R1ntR2)//R3):
\(\Rightarrow\)Rtđ=R4+R123=6+4=10\(\Omega\)
\(\Rightarrow\)Ic=\(\frac{U}{R_{tđ}}=\frac{12}{10}=1,2A\)
\(\Rightarrow\)Ic=I4=I123=1,2A
\(\Rightarrow\)U4=I4.R4=1,2.6=7,2V
Có :R4nt((R1ntR2)//R3)
\(\Rightarrow\)U=U4+U123
\(\Rightarrow\)U123=U-U4=12-7,2=4,8V
mà (R1ntR2)//R3
\(\Rightarrow\)U12=U3=U123=4,8V
\(\Rightarrow\)I12=\(\frac{U_{12}}{R_{12}}=\frac{4,8}{20}=0,24A\)\(\Rightarrow\)I1=I2=I12=0,24A\(\Rightarrow\)\(\left\{{}\begin{matrix}U_1=R_1.I_1=10.0,24=2,4V\\U_2=R_2.I_2=10.0,24=2,4V\end{matrix}\right.\)
\(\Rightarrow\) I3=\(\frac{U_3}{R_3}=\frac{4,8}{5}=0,96\)A
\(R_{12}=\dfrac{15.30}{15+30}=10\left(\Omega\right)\)
\(R_m=R_{12}+R_3=10+30=40\left(\Omega\right)\)
\(I_m=\dfrac{U_{AB}}{R_m}=\dfrac{12}{40}=0,3\left(A\right)\)
\(b,I_{12}=I_3=0,3\left(A\right)\)
\(\dfrac{I_1}{I_2}=\dfrac{R_2}{R_1}=\dfrac{30}{15}=\dfrac{2}{1}\)
\(\rightarrow I_1=0,2\left(A\right);I_2=0,1\left(A\right)\)
\(a,R_{23}=R_2+R_3=30+30=60\left(\Omega\right)\)
\(R_m=\dfrac{R_{23}.R_1}{R_{23}+R_1}=\dfrac{60.15}{60+15}=12\left(\Omega\right)\)
\(b,I_m=\dfrac{U_{AB}}{R_m}=\dfrac{12}{12}=1\left(A\right)\)
\(I_1+I_{23}=1\left(A\right)\)
\(\dfrac{I_1}{I_{23}}=\dfrac{R_{23}}{R_1}=\dfrac{60}{15}=\dfrac{4}{1}\)
\(\rightarrow I_1=0,8\left(A\right);I_{23}=0,2\left(A\right)\)
\(\rightarrow I_2=I_3=0,2\left(A\right)\)