Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MCD:R1//R2\)
\(=>R=\dfrac{R1\cdot R2}{R1+R2}=\dfrac{40\cdot60}{40+60}=24\Omega\)
\(U=U1=U2=60V=>\left\{{}\begin{matrix}I1=\dfrac{U1}{R1}=\dfrac{60}{40}=1,5A\\I2=\dfrac{U2}{R2}=\dfrac{60}{60}=1A\\I=\dfrac{U}{R}=\dfrac{60}{24}=2,5A\end{matrix}\right.\)
\(=>Q_{toa}=A=UIt=60\cdot2,5\cdot10\cdot60=90000\left(J\right)\)
Điện trở tương đương của mạch:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\Leftrightarrow R_{tđ}=\dfrac{R_1R_2R_3}{R_1R_2+R_2R_3+R_3R_1}=\dfrac{4.6.12}{4.6+6.12+12.4}=2\Omega\)
CĐDĐ qua mỗi điện trở
\(I_1=\dfrac{U_1}{R_1}=\dfrac{U}{R_1}=\dfrac{4}{4}=1\left(A\right);\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{U}{R_2}=\dfrac{4}{6}=\dfrac{2}{3}\approx0,667\left(A\right);\)
\(I_3=\dfrac{U_3}{R_3}=\dfrac{U}{R_3}=\dfrac{4}{12}=\dfrac{1}{3}\approx0,333\left(A\right)\)
a) Điện trở tương đương là:
\(R_{tđ}=\dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}}=\dfrac{1}{\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{4}}=2\left(\Omega\right)\)
b) Hiệu điện thế U:
\(U=I.R=3.2=6\left(V\right)\)
Đáp án:
a. Rtđ=100ΩRtđ=100Ω
b. I1=I2=1,2(A)I1=I2=1,2(A)
Giải thích các bước giải:
a. Điện trở tương đương của đoạn mạch là:
Rtđ=R1+R2=60+40=100(Ω)Rtđ=R1+R2=60+40=100(Ω)
b. Cường độ dòng điện chạy qua mạch chính bằng cường độ dòng điện chạy qua các điện trở và bằng:
I=I1=I2=URtđ=120100=1,2(A)I=I1=I2=URtđ=120100=1,2(A)
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4V\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=U:R=2,4:3,2=0,75A\\I1=U1:R1=2,4:6=0,4A\\I2=U2:R2=2,4:12=0,2A\\I3=U3:R3=2,4:16=0,15A\end{matrix}\right.\)
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=3,2\left(\Omega\right)\)
\(U=U_1=U_2=U_3=2,4V\)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I_3=\dfrac{U_3}{R_3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
1. bạn tự vẽ sơ đồ mạch điện nhé!
2.
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4\left(V\right)\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I1=\dfrac{U1}{R1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I2=\dfrac{U2}{R2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I3=\dfrac{U3}{R3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
Điện trở tương đương của đoạn mạch:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.24}{12+24}=8\left(\Omega\right)\)
Do mắc song song nên \(U=U_1=U_2=12V\)
Cường độ dòng điện chạy qua mỗi điện trở và qua mạch chính:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{12}{8}=1,5\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{12}{12}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{12}{24}=0,5\left(A\right)\end{matrix}\right.\)
Bạn tự làm tóm tắt + vẽ sơ đồ mạch điện nhé!
Điện trở tương đương: \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{40.60}{40+60}=24\Omega\)
Do mạch mắc song song nên \(U=U_1=U_2=12V\)
Cường độ dòng điện qua mạch chính và mỗi điện trở:
\(I=\dfrac{U}{R}=\dfrac{12}{24}=0,5A\)
\(I_1=\dfrac{U1}{R1}=\dfrac{12}{40}=0,3A\)
\(I_2=\dfrac{U2}{R2}=\dfrac{12}{60}=0,2A\)
Giải
a. Vì \(R_1\)//\(R_2\) nên điện trở tương đương của đoạn mạch là :
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.6}{12+6}=4\Omega\)
b. CĐDĐ qua mạch chính là :
\(I=\dfrac{U}{R}=\dfrac{12}{4}=3A\)
Vì \(R_1\)//\(R_2\) nên ta có :
\(U=U_1=U_2=12V\)
CĐDĐ qua mỗi điện trở là :
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{12}=1A\)
\(\Rightarrow I_2=I-I_1=3-1=2A\)
c. Đổi : \(10'=600s\)
Nhiệt lượng tỏa ra trên mạch điện trong 10' là :
\(Q=I^2.R.t=3^2.4.600=21600J\)