Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{102}{5}\cdot\dfrac{6}{5}-\dfrac{107}{3}\cdot\dfrac{6}{5}-\dfrac{3}{4}\)
\(=\dfrac{6}{5}\cdot\dfrac{-229}{15}-\dfrac{3}{4}\)
\(=\dfrac{-458}{25}-\dfrac{3}{4}=-\dfrac{1907}{100}\)
= 102/5 x 6/5 - 107/3 x 6/5 - 3/4
= 6/5 x ( 102/5 - 107/3 ) - 3/4
= 6/5 x -229/15 - 3/4
= -458/25 - 3/4
= -1907/100
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
Giải :
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
~~Học tốt~~
\(4\cdot\left(\frac{1}{4}\right)^2+25\cdot\left[\left(\frac{3}{4}\right)^3\div\left(\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(=4\cdot\frac{1}{16}+25\cdot\left[\left(\frac{3}{4}\div\frac{5}{4}\right)^3\right]\div\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25\cdot\left(\frac{3}{5}\right)^3\div\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25\cdot\left(\frac{2}{5}\right)^3\)
\(=\frac{1}{4}+25\cdot\frac{8}{125}\)
\(=\frac{1}{4}\cdot\frac{8}{5}\)
\(=\frac{2}{5}\)
\(4.\left(\frac{1}{4}\right)^2+25.\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3\)
\(=4.\frac{1}{16}+25\left[\left(\frac{3}{4}:\frac{5}{4}\right)^3:\right]:\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25.\left(\frac{3}{5}\right)^3:\left(\frac{3}{2}\right)^3\)
\(=\frac{1}{4}+25.\left(\frac{2}{5}\right)^3\)
\(=\frac{1}{4}+25.\frac{8}{125}\)
\(=\frac{1}{4}+\frac{8}{5}\)
\(=\frac{2}{5}\)
c) Đặt \(A=2^0+2^1+2^2+...+2^{50}\)
\(\Leftrightarrow2A=2^1+2^2+2^3...+2^{51}\)
\(\Leftrightarrow2A-A=2^1+2^2+2^3...+2^{51}\)\(-2^0-2^1-2^2-...-2^{50}\)
\(\Leftrightarrow A=2^{51}-2^0=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+...+2^{50}< 2^{51}\)
a)Ta có: \(\hept{\begin{cases}2^{30}=\left(2^3\right)^{10}=8^{10}\\3^{30}=\left(3^3\right)^{10}=27^{10}\\4^{30}=\left(2^2\right)^{30}=2^{60}\end{cases}}\)và \(\hept{\begin{cases}3^{20}=\left(3^2\right)^{10}=9^{10}\\6^{20}=\left(6^2\right)^{10}=36^{10}\\8^{20}=\left(2^3\right)^{20}=2^{60}\end{cases}}\)
Mà \(8^{10}< 9^{10}\); \(27^{10}< 36^{10}\);\(2^{60}=2^{60}\)nên
\(8^{10}+27^{10}+2^{60}< 9^{10}+36^{10}+2^{60}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
\(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| - \(\dfrac{1}{5}\)= \(\dfrac{1}{6}\)
=> \(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\) - \(\dfrac{1}{4}\)| = \(\dfrac{11}{30}\)
=> | \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| = \(\dfrac{11}{15}\)
=> \(\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{11}{15}\\\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{-11}{15}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{59}{60}\\\dfrac{1}{3}x=\dfrac{-29}{60}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{59}{20}\\x=\dfrac{-29}{20}\end{matrix}\right.\)
Chúc bạn học tốt !
M chia hết ch0 420 hay 20