\(m< n\), chứng tỏ :

a) \(2m+1< 2n+1\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

bài 1:

a) 4n+4+3n-6<19

<=> 7n-2<19

<=> 7n<21 <=> n< 3

b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43

-6n+25\(\leq\)43

-6n\(\leq\)18

n\(\geq\)-3

19 tháng 7 2017

bài 1 ở chỗ nào vậy

26 tháng 9 2024

a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\) 

A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\)

A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))

Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)\(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)

nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))

A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)

 

18 tháng 10 2016

no trả lời

27 tháng 8 2019

h. 

n3+ 3n2 -n - 3

= n( n2 -1) + 3( n2 - 1)

= ( n +3)( n2 - 1)

= ( n +3)( n -1)( n +1)

Do n là số nguyên lẻ. Đặt : 2k + 1 = n . Ta có :

( 2k+ 4)2k( 2k +2)

= 2( k + 2)2k . 2( k+ 1)

= 8k( k +1)( k +2)

Do : k ; k+1; k+2 là 3 STN liên tiếp

--> k( k +1).(k+ 2) chia hết cho 6

-->8k( k +1).(k+ 2) chia hết cho 48 với mọi n là số nguyên lẻ

27 tháng 8 2019

Bạn đánh chắc mỏi tay lắm nhỉ

22 tháng 4 2017

a)3 – 2x > 4 ⇔ 3 – 4 > 2x ⇔ -1 > 2x

\(\Leftrightarrow-\dfrac{1}{2}>x\)

Vậy nghiệm của bất phương trình: \(x< -\dfrac{1}{2}\)

b)3x + 4 < 2 ⇔3x < 2 – 4 ⇔ 3x < -2 \(\Leftrightarrow x< -\dfrac{2}{3}\)

Vậy nghiệm của bất phương trình: \(x\) \(< -\dfrac{2}{3}\)

c)(x – 3)2 < x2 – 3 ⇔x2 – 6x + 9 <x2 – 3

⇔x2 – 6x – x2 < -3 – 9

⇔-6x < -12

⇔x > 2

Vậy nghiệm của bất phương trình : x > 2

d)(x-3)(x+3) < (x+2)2 + 3 \(\Leftrightarrow\) x2 – 9 < x2 + 4x + 4 +3

\(\Leftrightarrow\)x2 – x2 – 4x < 4 + 3 + 9

\(\Leftrightarrow\)-4x < 16

\(\Leftrightarrow\)x > -4

Vậy nghiệm của bất phương trình x > -4.



a: m<n nên m-n<0

a>b nên a(m-n)<b(m-n)

b: a>b nên a-b>0

m(a-b)<n(a-b)