Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{b}\) có GTLN \(\Leftrightarrow\) a lớn nhất và b nhỏ nhất.
Mà b \(\ne\) 0 vì b là mẫu của phân số nên : a = 42 ; b= 7.
Vậy \(\frac{a}{b}\) có GTLN là \(\frac{42}{7}=6\)
b) \(\frac{a-b}{a+b}\) dương có GTNN \(\Leftrightarrow\) a - b nhỏ nhất và a + b lớn nhất
\(\Leftrightarrow\) a -b = 7 (= 7 - 0) và a + b = 77 (= 42 + 35)
\(\Leftrightarrow\) a = 42 và b = 35
Vậy \(\frac{a-b}{a+b}\) dương có GTNN là \(\frac{7}{77}=\frac{1}{11}\)
Online_Maths chọn câu trả lời này đi !
trong bài toán này ta thấy hiệu của a và b là số dương nhỏ nhất trong tập hợp khác 0 là 7.tất nhiên a+b cũng là số dương lớn nhất nên kết luận hai số có tổng lớn nhất trong tập hợp là 35 và 42 vị a-b=7 nên a>b. so a=42,b=35
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
M=(6n+4-5):(3n+2)=2-5:(3n+2)
a) để M nguyên thì (3n+2) phải là ước của 5
=> 3n+2={-5; -1; 1; 5}
+/ 3n+2=-5 => n=-7/3 (loại)
+/ 3n+2=-1 => n=-1; M=7
+/ 3n+2=1 => n=-1/3 loại
+/ 3n+2=5 => n=1; M=-3
Đs: n={-1; 1}
b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0
Mmin=2-5/2=-1/2