K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

a, Đặt \(A=\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)

\(=2t^2-5t+1-t^2-3t-1\)

\(=t^2-8t\)

Ta có: \(t^2-8t=0\)

\(\Leftrightarrow t\left(t-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t=8\end{matrix}\right.\)

Vậy t = 0 hoặc t = 8 là nghiệm của A

b, Đặt \(B=\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)

\(=3t^2-2t+1-3t^2+2t-5\)

\(=-4\)

\(\Rightarrow\)B vô nghiệm vì giá trị của B không phụ thuộc vào t

Vậy đa thức B vô nghiệm

14 tháng 6 2017

a) Ta có: \(\left(2t^2-5t+1\right)-\left(t^2+3t+1\right)\)

\(=2t^2-5t+1-t^2-3t-1=t^2-8t\)

Xét \(t^2-8t=0\) hay \(t\left(t-8\right)=0\) ta được hai nghiệm là \(t_1=0,t_2=8\)

b) \(\left(3t^2-2t+1\right)-\left(3t^2-2t+5\right)\)

\(=3t^2-2t+1-3t^2+2t-5=-4\)

Rõ ràng ( - 4 ) không thể = 0 nên đa thức này không có nghiệm. Nó là đa thức bậc 0 ( vì -4 = -4t0 )

a: \(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

b: \(M\left(x\right)=x^4-2\)

\(N\left(x\right)=6x^5+x^4-4X^4+4x-4\)

c: \(M\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-2=-\dfrac{31}{16}\)

13 tháng 8 2019

3.

a) \(\left(x-1\right)^3=125\)

=> \(\left(x-1\right)^3=5^3\)

=> \(x-1=5\)

=> \(x=5+1\)

=> \(x=6\)

Vậy \(x=6.\)

b) \(2^{x+2}-2^x=96\)

=> \(2^x.\left(2^2-1\right)=96\)

=> \(2^x.3=96\)

=> \(2^x=96:3\)

=> \(2^x=32\)

=> \(2^x=2^5\)

=> \(x=5\)

Vậy \(x=5.\)

c) \(\left(2x+1\right)^3=343\)

=> \(\left(2x+1\right)^3=7^3\)

=> \(2x+1=7\)

=> \(2x=7-1\)

=> \(2x=6\)

=> \(x=6:2\)

=> \(x=3\)

Vậy \(x=3.\)

Chúc bạn học tốt!

13 tháng 8 2019

Giúp mk với nha các bạn

29 tháng 3 2020

viết bằng công thức ở chỗ \(\sum\) đi bạn

29 tháng 3 2020

Bạn bảo cái gì cơ