K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

Nhóm 2 số 1 cặp

M= 1.(1+3) + 3^2.(1+3) + .... + 3^118.(1+3)

M= 1. 4 + 3^2.4+... + 3^118 . 4

M = 4.(1+3^2+...+ 3^118) chia hết cho 4

Vậy M chia hết cho 4

Nhóm 3 số 1 cặp

M= 1.(1+3+3^2) + 3^3.(1+3+3^2) + .... + 3^117.(1+3+3^2)

M= 1.13+ 3^3.13+... + 3^117 . 13

M = 13 . (1+3^3+...+3^117) chia hết cho 13

Vậy M chia hết cho 13

Nhớ k cho mình nếu bạn thấy đúng nhé!

24 tháng 12 2016

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13

Đối với 4 cũng tương tự 

11 tháng 11 2021

A =3+32+33+...+3119

A=(3+32)+(33+34)+...(3118+3119)

A=3.(1+3)+33.(1+3)+...+3118.(1+3)

A=3.4+33.4+...+3118.4

A=4.(3+33+...+3118)\(⋮\)4

=>A\(⋮\)4

A=3+32+33+...+3119

A=(3+32+33)+...+(3117+3118+3119)

A=3.(1+3+9)+...+3117.(1+3+9)

A=3.13+...+3117.13

A=13.(3+...+3117)\(⋮\)13

vì   A\(⋮\)4

và  A\(⋮\)13

=>A\(⋮\)4.13

=>A\(⋮\)52

vậy A\(⋮\)4 và A\(⋮\)52

Chứng minh tổng 2 số lẻ chia hết cho 2 .

Ta gọi 2 số lẻ là 2k + 1 và 2q + 1.

=> tổng của 2 số lẻ là :

    2k + 1 + 2q + 1 = 2(k + q) + 2

                               = 2(k + p + 2) chia hết cho 2.

Vậy...

Còn chứng minh 3 số liên tiếp chia hết cho 3 bạn gọi các số là 3k + 1 , 3k + 2 , 3k + 3 rồi tự nghĩ nha.

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

25 tháng 8 2023

A = 32 + 33 + 34 +...+ 3101

A = 32.(1 + 3 + 32 + 33 +...+ 399)

A =32[(1+ 3+32+33) + (34+ 35+36+37)+...+ (396 + 397+ 398 + 399)

A = 32.[ 40 + 34.(1+ 3 + 32 + 33)+...+ 396.(1 + 3 + 32 + 33)

A = 32.[ 40 + 34. 40 + ...+ 396.40]

A = 32.40.[ 1 + 34+...+396

A = 3.120.[1 + 34 +...+ 396]

120 ⋮ 120 ⇒ A =  3.120.[ 1 + 34 +...+396] ⋮ 120 (đpcm)

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

7 tháng 9 2017

a, mình nghĩ là \(16^5+2^{15}\)

ta có : \(16^5=2^{20}\)

=>\(16^5+2^{15}=2^{20}+2^{15}\)

=\(2^{15}.2^5+2^{15}\)

\(=2^{15}.\left(2^5+1\right)\)

\(=2^{15}.33\)

mà \(2^{15}.33⋮33\)

\(=>16^5+2^{15}⋮33\)

7 tháng 9 2017

a)Ta thấy: 16^5=2^20

=> A=16^5 + 2^15

= 2^20 + 2^15

= 2^15.2^5 + 2^15

= 2^15(2^5+1)

=2^15.33

số này luôn chia hết cho 33 

b)

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng