K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Thay $n=3$ ta có: \(\left\{\begin{matrix} \frac{U_3-U_1}{3}=1\\ U_1-U_3=-4\end{matrix}\right.\) (vô lý)

Bạn xem lại đề.

Công sai d có thể xác định bằng công thức:

\(-4=U_1-U_3=U_1-(U_2+d)=U_1-(U_1+d+d)=-2d\)

\(\Rightarrow d=2\)

1:

\(S_8=\dfrac{u_1\cdot\left(1-q^8\right)}{1-q}=\dfrac{2048\cdot\left(1-\left(\dfrac{5}{4}\right)^8\right)}{1-\dfrac{5}{4}}\)

\(=-8192\left(1-\left(\dfrac{5}{4}\right)^8\right)\)

2:

\(u2=u1\cdot q\)

=>\(q=\dfrac{3}{-1}=-3\)

\(S_{10}=\dfrac{u1\left(1-q^{10}\right)}{1-q}=\dfrac{-1\cdot\left(1-\left(-3\right)^{10}\right)}{1-\left(-3\right)}\)

\(=\dfrac{-1}{4}\left(1-3^{10}\right)\)

1: u3=-3 và u9=29

=>u1+2d=-3 và u1+8d=29

=>-6d=-32 và u1+2d=-3

=>d=16/3 và u1=-3-2d=-3-32/3=-41/3

2: \(S_{20}=\dfrac{20\cdot\left[2\cdot u1+19\cdot d\right]}{2}=10\cdot\left(-5\cdot2+19\cdot3\right)\)

=10(57-10)

=10*47=470

a: u4=4 và u6=8

=>u1+3d=4 và u1+5d=8

=>-2d=-4 và u1+3d=4

=>d=2 và u1=4-3d=-2

b: u1-u3+u5=10 và u1+u6=17

=>u1-u1-2d+u1+4d=10 và u1+u1+5d=17

=>u1+2d=10 và 2u1+5d=17

=>u1=16 và d=-3

c: u1+u2=5 và u3*u5=91

=>u1+u1+d=5 và (u1+2d)(u1+4d)=91

=>2u1+d=5 và (u1+2d)(u1+4d)=91

=>d=5-2u1 và (u1+10-4u1)(u1+20-8u1)=91

=>d=5-2u1 và (-3u1+10)(-7u1+20)=91

(-3u1+10)(-7u1+20)=91

=>21u1^2-60u1-70u1+200=91

=>21u1^2-130u1+109=0

=>u1=1 hoặc u1=109/21

Khi u1=1 thì d=5-2u1=5-2=3

Khi u1=109/21 thì d=5-2u1=5-218/21=-113/21

\(\Leftrightarrow\left\{{}\begin{matrix}u_1-u_1-2q+u_1+4q=65\\u_1+u_1+6q=325\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1+2q=65\\2u1+6q=325\end{matrix}\right.\)

=>u1=-130; q=195/2

3 tháng 1 2023

`u_n = u_1 + (n-1).d`

`{(u_1-u_3+u_5=65),(u_1+u_7=325):}`

`<=>{(u_1-u_1-2d+u_1+4d=65),(u_1+u_1+6d=325):}`

`<=>{(u_1+2d=65),(2u_1+6d=325):}`

`<=>{(u_1=-130),(u_2=195/2):}` 

 

 

1:

\(S_{10}=\dfrac{u_1\cdot\left(1-q^{10}\right)}{1-q}=\dfrac{-3\cdot\left(1-\dfrac{1}{1024}\right)}{1-\dfrac{1}{2}}\)

\(=-6\cdot\dfrac{1023}{1024}=\dfrac{-3069}{512}\)

2:

\(\left\{{}\begin{matrix}u1=6\\u2=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\u1\cdot q=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u1=6\\q=3\end{matrix}\right.\)

\(S_{12}=\dfrac{u_1\left(1-q^{12}\right)}{1-q}=\dfrac{6\cdot\left(1-3^{12}\right)}{1-3}=-3\cdot\left(1-3^{12}\right)\)

\(=3^{13}-3\)