Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK :
Gọi M là trung điểm của BC
=> AM ⊥⊥ BC (1)
Ta có {BC ⊥AMBC⊥AA'⇒ BC ⊥ A'M (2)
Mặt khác (ABC) ∩(A'BC) = BC (3)
Chọn D
Diện tích đáy là B = S ∆ A B C = a 2 3 4 .
Chiều cao là h = d((ABC); (A'B'C')) = AA'
Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên A'I ta có:
Xét tam giác A'AI vuông tại A ta có:
Chọn C
Gọi M là trung điểm của BC
=> AM ⊥ BC (1)
Ta có B C ⊥ A M B C ⊥ A A ' ⇒ B C ⊥ A ' M ( 2 )
Mặt khác A B C ∩ A ' B C = B C ( 3 )
Chọn D
Gọi M là trung điểm của BC và H là hình chiếu của A trên A'M.
Ta có :
(do tính chất trọng tâm).
Xét tam giác vuông A'AM :
Suy ra thể tích lăng trụ ABC. A'B'C' là:
Chọn C
Gọi I là trung điểm của BC và H là hình chiếu vuông góc của A trên A'I. Khi đó ta có:
Trong tam giác vuông AA'I ta có:
Chọn B
Ta có A ' G ⊥ A B C nên A ' G ⊥ B C ; B C ⊥ A M ⇒ B C ⊥ M A A '
Kẻ M I ⊥ A A ' ; B C ⊥ I M nên d A A ' ; B C = I M = a 3 4
Kẻ G H ⊥ A A ' , ta có
Chọn B
Do ABC là tam giác vuông tại A, cạnh BC=2a và A B C ^ = 60 0 nên AB=a, AC=√3
Gọi H là hình chiếu vuông góc của B' lên BC => H thuộc đoạn BC (do nhọn)
(do (BCC'B') vuông góc với (ABC)).
Kẻ HK song song AC (K thuộc AB) (do ABC là tam giác vuông tại A).
Ta có ΔBB'H vuông tại H
Mặt khác HK song song AC
Từ (1), (2) và (3) suy ra: