K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2019

Gặp dạng hệ số đằng trước giống chỉ số của số hạng thế này thì cứ đạo hàm

\(\left(1+x+x^2\right)^{20}=a_0+a_1x+a_2x^2+...+a_{40}x^{40}\)

Đạo hàm 2 vế:

\(\Rightarrow20\left(1+x+x^2\right)^{19}\left(1+2x\right)=a_1+2a_2x+3a_3x^2+...+40a_{40}x^{39}\)

Cho \(x=1\) ta được:

\(20.3^{19}.3=a_1+2a_2+3a_3+...+40a_{40}\)

\(\Rightarrow T=20.3^{20}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Với a = 0, b = 1, hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x}&{{\rm{  }}x < 2}\\4&{{\rm{  }}x = 2}\\{ - 3x + 1}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + 1} \right) =  - 3.2 + 1 =  - 5\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x} \right) = 2.2 = 4\\ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\end{array}\)

Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

Vậy hàm số không liên tục tại x = 2.

b) Ta có:

 \(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + b} \right) =  - 3.2 + b =  - 6 + b\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + a} \right) = 2.2 + a = 4 + a\\f\left( 2 \right) = 4\end{array}\)

Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right)\)

\( \Leftrightarrow  - 6 + b = 4 + a = 4 \Leftrightarrow \left\{ \begin{array}{l}4 + a = 4\\ - 6 + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 10\end{array} \right.\)

Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.

c) Tập xác định của hàm số là: ℝ.

Với x < 2 thì \(f\left( x \right) = 2x + a\) là hàm đa thức nên liên tục.

Với x > 2 thì \(f\left( x \right) = -3x + b\) là hàm đa thức nên liên tục.

Do đó để hàm số liên tục trên ℝ thì hàm số \(f\left( x \right)\) liên tục tại x = 2.

Vậy với a = 0 và b = 10 thỏa mãn điều kiện.

NV
16 tháng 6 2019

\(\left(2x+3\right)^{10}=a_0+a_1x+a_2x^2+...+a_{10}x^{10}\)

Thay \(x=1\) vào ta được:

\(5^{10}=a_0+a_1+a_2+...+a_{10}\)

Thay \(x=-1\) vào ta được:

\(\left(-2+3\right)^{10}=a_0-a_1+...+a_{10}=1^{10}=1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Dễ thấy x = 0 thuộc tập xác định của hàm số.

\(f\left( 0 \right) = {0^2} + 1 = 1\)

Ta có:       \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 1} \right) = {0^2} + 1 = 1\)

                   \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {1 - x} \right) = 1 - 0 = 1\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 1\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1 = f\left( 0 \right)\).

Vậy hàm số liên tục tại điểm \(x = 0\).

b)Dễ thấy x = 1 thuộc tập xác định của hàm số.

\(f\left( 1 \right) = {1^2} + 2 = 3\)

Ta có:       \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 2} \right) = {1^2} + 2 = 3\)

                   \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} x = 1\)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).

Vậy hàm số không liên tục tại điểm \(x = 1\).

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-2\right)\left(3x+2\right)}+\dfrac{1}{\left(x-2\right)\left(x-10\right)}\right)=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x-2\right)}\left(\dfrac{x-10+3x+2}{\left(3x+2\right)\left(x-10\right)}\right)\)

\(=\lim\limits_{x\rightarrow2}\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(3x+2\right)\left(x-10\right)}=\lim\limits_{x\rightarrow2}\dfrac{4}{\left(3x+2\right)\left(x-10\right)}=-\dfrac{1}{16}\)

NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh

23 tháng 12 2023

Tổng 20 số hạng đầu là:

\(u_1\cdot\dfrac{1-q^{20}}{1-q}=3\cdot\dfrac{1-2^{20}}{1-2}=3\cdot\dfrac{2^{20}-1}{2-1}=3\cdot\left(2^{20}-1\right)\)

=>Chọn C

NV
3 tháng 10 2020

\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)-1\)

\(=x+\sum\limits^n_{k=2}kx\left(1+x\right)...\left(1+\left(k-1\right)x\right)\)

\(=x+\sum\limits^n_{k=2}kx\left[\left(1+x\right)...\left(1+\left(k-1\right)x\right)-1+1\right]\)

\(=\sum\limits^n_{k=1}kx+\sum\limits^n_{k=2}kx\left[\left(1+x\right)\left(1+2x\right)...\left(1+\left(k-1\right)x\right)-1\right]\)

\(=\sum\limits^n_{k=1}kx+\sum\limits^n_{k=2}kx\left(\sum\limits^{k-1}_{i=1}ix\left(1+x\right)\left(1+2x\right)...\left(1-\left(i-1\right)x\right)\right)\)

Do đó tổng của các hệ số chứa \(x^2\) là: \(\sum\limits^n_{k=2}k\left(\sum\limits^{k-1}_{i=1}i\right)\)

Hay \(a_2=\sum\limits^n_{k=2}k\left(\frac{k\left(k-1\right)}{2}\right)=\sum\limits^n_{k=2}\frac{k^2\left(k-1\right)}{2}\)

Do đó:

\(S=1+\sum\limits^{2019}_{k=2}\frac{k^2\left(k-1\right)}{2}+\sum\limits^{2019}_{k=2}k^2=1+\sum\limits^{2019}_{k=2}\left(\frac{k^2\left(k-1\right)}{2}+k^2\right)\)

\(=1+\sum\limits^{2019}_{k=2}\left(\frac{k^2\left(k+1\right)}{2}\right)\)

3 tháng 10 2020

thanks,đã giúp r mong bạn giúp luôn câu hình học mk vs