Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
A = 1^3 + 2^3 + 3^3 + 4^3
A = 1 + 8 + 27 + 64
A = 100
A = 10^2
=> A là một số chính phương
công thức nè: 1^3+2^3+...+n^3=(1+2+...+n)^2 điều kiện: n thuộc N*
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
SỐ dư khi chia A cho 20 là 3. and mình cx play BB nhưng đã nghỉ lâu rồi
Hk đâu bạn ơi, ta chỉ cần tìm ra 1 trường hợp là hk phải rồi
VD : 11 : 4 = 2, R = 3
Mà 11 hk phải là số chính phương
CHÚC BẠN HỌC GIỎI NHÉ
1 số tự nhiên bất ki khi chia cho 4 chỉ có thể dư 0 hoặc dư 1
vậy suy ra 1 số tự nhiên bất ki khi chia cho 4 dư 3 thì số đó không phải là số chính phương