K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VT
21 tháng 10 2019
Từ M kẻ MK vuông góc với BC; gọi a là độ dài cạnh tam giác; CM =x
ta có MN2 =MK2 +KN2 = (CN-CK)2 +KM2
CK = MCcos60 = x/2; CN = AM = AC -CM = a-x; KM = CMsin60 = \(\frac{x\sqrt{3}}{2}\)
=> MN2 =(a-x -\(\frac{x}{2}\))2 + \(\frac{3}{4}x^2=\)\(a^2-3ax+3x^2=3\left(x-\frac{a}{2}\right)^2+\frac{a^2}{4}\ge\frac{a^2}{4}\)
=> MN\(\ge\frac{a}{2}\)
MN nhỏ nhất khi x= CM = \(\frac{a}{2}\) hay M là trung điểm của AC
với a=2014 thì MN nhỏ nhất là \(\frac{a}{2}=\frac{2014}{2}=1007\)
a) Từ điểm M kẻ đường thẳng vuông góc với AD cắt AD tại Q.
Áp dụng ĐL Pytagore cho \(\Delta\)MCN vuông ở C và \(\Delta\)MQP vuông ở Q; ta có:
CM2 + CN2 = MN2; MQ2 + PQ2 = MP2
\(\Delta\)MNP là tam giác đều nên MN = MP. Do đó: CM2 + CN2 = MQ2 + PQ2 (1)
Dễ thấy: Tứ giác ABMQ là hình chữ nhật => AQ = BM và MQ = AB = a (2)
(1); (2) => CM2 + CN2 = a2 + PQ2 <=> (a - BM)2 + CN2 = a2 + (AP - AQ)2
<=> a2 - 2a.BM + BM2 + CN2 = a2 + AP2 - 2.AP.AQ + AQ2
<=> CN2 - AP2 = a2 - 2.AP.AQ + AQ2 - a2 + 2a.BM - BM2
<=> CN2 - AP2 = 2a.BM - 2.AP.AQ + (AQ2 - BM2)
<=> CN2 - AP2 = 2a.BM - 2.AP.BM (Do AQ = BM theo cmt)
<=> CN2 - AP2 = 2.BM.(a - AP) <=> CN2 - AP2 = 2.BM.DP (đpcm).
b) Hạ đường cao NH của \(\Delta\)MNP:
Ta có: cos 600 = \(\frac{\sqrt{3}}{2}\)=> NH = \(\frac{\sqrt{3}}{2}\).MN = \(\frac{\sqrt{3}}{2}\).MP (Vì \(\Delta\)MNP đều)
Theo quan hệ đường xiên hình chiếu: MP > MQ = a => NH > \(\frac{\sqrt{3}}{2}\).a
=> SMNP = MP.NH /2 > \(\frac{\sqrt{3}}{4}\)a2
Vậy Min SMNP = \(\frac{\sqrt{3}}{4}\)a2 .Dấu "=" xảy ra <=> N là trung điểm của DC và M;P nằm trên BC;AD cho ^CNM = ^DNP = 600.
\(\sin60^0=\frac{\sqrt{3}}{2}\) mới đúng, bn sửa lại nhé.