K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

-Chị hay anh gì ơi,e mới học lớp 8,chưa giải đc bài này,nhưng có câu hỏi ngoài lề này.Anh/Chị là SONE đúng không ạ?

Mều là biệt danh Jessica

Móm là biệt danh Yoona

Nếu đúng e làm quen nhé,e cũng là SONE

23 tháng 5 2017

Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Đường tròn c: Đường tròn qua N với tâm O Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, N] Đoạn thẳng m: Đoạn thẳng [B, M] Đoạn thẳng n: Đoạn thẳng [M, E] Đoạn thẳng p: Đoạn thẳng [F, N] Đoạn thẳng q: Đoạn thẳng [M, N] Đoạn thẳng r: Đoạn thẳng [Q, P] Đoạn thẳng s: Đoạn thẳng [P, E] B = (-1.04, 1.22) B = (-1.04, 1.22) B = (-1.04, 1.22) C = (4.1, 1.2) C = (4.1, 1.2) C = (4.1, 1.2) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q

a. Ta thấy do ABCD là hình vuông nên \(\widehat{FCN}=\widehat{MAE}=45^o\)

Lại có \(\widehat{FCN}=\widehat{FBN}\) (Góc nội tiếp cùng chắn cung FN)

Vậy nên \(\widehat{MAE}=\widehat{MBE}\) hay tứ giác AMEB nội tiếp.

b. Do  tứ giác AMEB nội tiếp nên \(\widehat{MEB}=180^o-\widehat{BAM}=90^o\)

Do P thuộc đường tròn (O) nên \(\widehat{MPB}=90^o\Rightarrow\)MPEB nội tiếp.

\(\Rightarrow\widehat{MBP}=\widehat{MEP}\)

Xét tam giác MBP có \(\widehat{MBP}+\widehat{BMP}=90^o\)

Xét tam giác FMN có \(\widehat{QNP}+\widehat{BMP}=90^o\)

Vậy \(\widehat{QNP}=\widehat{MBP}=\widehat{MEP}\)

Vậy tứ giác QPNE nội tiếp hay \(\widehat{QPN}=180^o-\widehat{QEN}=90^o\)

Góc \(\widehat{BPN}=90^o\Rightarrow\) B, Q, P thẳng hàng.

23 tháng 5 2017

Woa vẽ được hình à. Chỉ cho em với chị HOÀNG THỊ THU HIỀN.

25 tháng 10 2021

mình chịu

17 tháng 12 2023

a: Xét tứ giác MNBD có

\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)

=>MNBD là tứ giác nội tiếp

=>\(\widehat{NBD}+\widehat{NMD}=180^0\)

mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)

nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)

=>\(\widehat{NMA}=\widehat{CMA}\)

=>MA là phân giác của góc NMC

b: Ta có: NBDM là tứ giác nội tiếp

=>\(\widehat{DBM}=\widehat{DNM}\)

=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MAC}\) là góc nội tiếp chắn cung MC

Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)

=>\(\widehat{ENM}=\widehat{EAM}\)

=>ANME là tứ giác nội tiếp

=>\(\widehat{AEM}+\widehat{ANM}=180^0\)

=>\(\widehat{AEM}=90^0\)

=>ME\(\perp\)AC

Sửa đề:BM cắt (O) tại D

a: Xét (O) có

ΔCDM nội tiếp

CM là đường kính

Do đó: ΔCDM vuông tại D

=>BD\(\perp\)CD tại D

Xét (O) có

ΔCEM nội tiếp

CM là đường kính

Do đó: ΔCEM vuông tại E

=>CE\(\perp\)EM tại E

=>EM\(\perp\)BC tại E

Xét tứ giác MABE có

\(\widehat{MAB}+\widehat{MEB}=90^0+90^0=180^0\)

nên MABE là tứ giác nội tiếp

b: Xét ΔBDC vuông tại D và ΔBEM vuông tại E có

\(\widehat{DBC}\) chung

Do đó: ΔBDC đồng dạng với ΔBEM

=>\(\dfrac{DC}{ME}=\dfrac{BC}{MB}\)

=>\(ME\cdot CB=MB\cdot DC\)