Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác OEB và tam giác OMC có:
góc OBE = góc OCM (t/c đường chéo hv)
OC = OB ( nt)
EB = MC (gt)
Vậy tam giác OEB = tam giác OMC (c-g-c)
=> EO = MO (1) và góc EOB = góc MOC
mà góc BOC = góc BOM + góc MOC = 90 độ
=> góc EOM = góc EOB + góc BOM = 90 độ (2)
Từ (1),(2) => tam giác OEM vuông cân
b) Ta có: AB//CN (N thuộc DC)
ÁP dụng định lí Ta - let tá được:
AM/MN= BM/MC mà BM=AE và MC=BE (gt)
=> AM/MN = AE/BE
=> EM//BN (đ/l Ta - let đảo)
Phần còn lại mình còn đang suy nghĩ.
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
BM=DN
Do đó: ΔABM=ΔADN
b: ΔABM=ΔADN
=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)
\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)
mà \(\widehat{MAB}=\widehat{NAD}\)
nên \(\widehat{DAM}+\widehat{DAN}=90^0\)
=>\(\widehat{MAN}=90^0\)
Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)
nênΔAMN vuông cân tại A
d: ΔAMN cân tại A
mà AI là đường phân giác
nên I là trung điểm của MN và AI\(\perp\)MN tại I
=>AP\(\perp\)MN tại I
Xét ΔPNM có
PI là đường cao
PI là đường trung tuyến
Do đó: ΔPNM cân tại P
=>PN=PM
=>PM=PD+DN=PD+BM