K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

A B C D M H E K

Hướng dẫn:

Xét \(\Delta\)DBK có: DH vuông BK; BC vuông DK và BC cắt DH tại E

=> E là trực tâm \(\Delta\)BDK => KM vuông BD (1)

Tứ giác ABHD nội tiếp => ^ABD = ^AHD mà ^ABD = ^DBC => ^AHD = ^DBC => Tứ giác MBHE nội tiếp 

=> ^BME = 90 độ => EM vuông BD (2)

Từ (1); (2) => M; E; K thẳng hàng

4 tháng 4 2019

Bạn đã có đáp án chưa? Giúp mình câu d.

29 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, Tứ giác ACFK nội tiếp (I) với I là trung điểm của KF => BD là trung trực AC phải đi qua I

d, HS tự chứng minh

a: \(\widehat{ADE}+\widehat{EDC}=90^0\)

\(\widehat{KDC}+\widehat{EDC}=90^0\)

Do đó: \(\widehat{ADE}=\widehat{KDC}\)

Xét ΔADE vuông tại A và ΔCDK vuông tại C có

DA=DC

\(\widehat{ADE}=\widehat{KDC}\)

Do đó: ΔADE=ΔCDK

=>DE=DK

Xét ΔDEK có

\(\widehat{EDK}=90^0\)

DE=DK

Do đó: ΔDEK vuông cân tại D

b: Xét ΔDFK vuông tại D có DC là đường cao

nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)

=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi

4 tháng 6 2015

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).

a) Xét ΔAMK vuông tại A và ΔCMH vuông tại C có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMK}=\widehat{CMH}\)(hai góc đối đỉnh)

Do đó: ΔAMK=ΔCMH(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=CH(hai cạnh tương ứng)

Xét tứ giác AKCH có 

AK//CH(\(\perp AC\))

AK=CH(cmt)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề