Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OI vuông góc với FG tại I. Ta chứng minh OI=OM =a/2 (a là cạnh của hình vuông)
KHI đó GF tiếp xúc với đường tròn tại I
Hai tam giác vuông ADG và FBK có:
\(\widehat{DAG}=\widehat{KFB}\)( \(\widehat{A_1}+\widehat{A_2}=90^0\Rightarrow\widehat{A_1}+\widehat{K_1}=90^0\)MÀ \(\widehat{K_1}+\widehat{KFB}=90^0\))
\(\Rightarrow\Delta ADG~\Delta FBK\Rightarrow\frac{AD}{FB}=\frac{DG}{BK}\)
\(\Rightarrow DG=\frac{AD}{FB}.BK=\frac{a}{3a}.\frac{a}{2}=\frac{2a}{3}\)
Từ đó \(CG=\frac{a}{3};MG=\frac{a}{2}-\frac{a}{3}=\frac{a}{6}\)
Trong tam giác vuông CGF có:
\(GF^2=CF^2+CG^2=\frac{a^2}{16}+\frac{a^2}{9}=\frac{25a^2}{144}\Rightarrow CF=\frac{5a}{12}\)
Ta có: \(S_{OGF}=S_{OMCN}-\left(S_{ÒNF}+S_{OMG}+S_{CGF}\right)\)\(=\frac{a^2}{4}-\left(\frac{a^2}{16}+\frac{a^2}{24}+\frac{a^2}{24}\right)=\frac{5a^2}{48}\)(1)
Mặt khác: \(S_{OGF}=\frac{1}{2}.OI.GF=OI.\frac{5a}{24}\)(2)
Từ (1);(2) \(\Rightarrow\frac{5a^2}{48}=OI.\frac{5a}{24}\Rightarrow OI=\frac{a}{2}\)
Vậy GF tiếp xúc với đường tròn tâm O tại I
đánh dấu A1 vào góc DAG , A2 vào góc BAC, K1 vào góc BKC. kẻ OM vuông góc DC, kẻ OG, kẻ OI vuông góc GF
gọi I là giao điểm của QM và BD
Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)
\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)
vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)
Ta có : MB = NB ; DP = DQ ; PC = NC
nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)
do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng
từ đó ta được đpcm
a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)
chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)
b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)
ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)
=> góc ECA + góc HIB = 90o (1)
Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)
Từ (1) và (2) => góc ECA = góc EKI
=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)
c,Ta có: góc EAB + góc EBA = 90o và từ (3), (4) => góc EAB = góc BIH
mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)
=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)
Tương tự, ta có góc K + góc KAH = 90o
góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t) => góc KEN = góc K => tam giác KNE cân tại N => NK = NE (**)
từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)