K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

a, góc FAD + góc DAE = 90 

góc BAE  + góc DAE = 90 

=> góc FAD = góc BAE 

xét tam giác ADF và tam giác ABE có : góc ADF = góc ABE = 90

AD = AB do ABCD là hình vuông (gt)

=> tam giác ADF = tam giác ABE (cgv-gnk)

=> AF = AE (đn)

=> tam giác AFE cân tại A (đn)

góc AFE = 90 (gT)

=> tam giác AFE vuông cân (dh)

b, tam giác AFE cân tại A (câu a)

AI Là trung tuyến của tam giác AFE (gt)

=> AI _|_ FE (đl)                                                                                 (1)

EG // AB (gt)

AB // DC do ABCD là hình vuông (gT)

=> EG // FK                                    (2)

=> góc GEI = góc IFK  (slt)

xét tam giác GIE và tam giác KIF có : góc GIE = góc KIF (đối đỉnh)

FI = IE do I là trđ của FE (gt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> GE = FK (3)

(2)(3) => GEFK là hình bình hành và (1)

=> GEFK là hình thoi (dh)

a: Xét ΔDBA vuông tại D và ΔABC vuông tại A có

góc ABC chung

Do đó: ΔDBA\(\sim\)ΔABC

Suy ra: DB/AB=AB/BC(1)

b: Xét ΔBDA có BFlà phân giác

nên DF/FA=DB/AB(2)

Xét ΔABC có BE là phân giác

nên AE/EC=BA/BC(3)

Từ (1), (2) và (3) suy ra DF/FA=AE/EC