K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

a. Dễ thấy \(AEMF\)là hình chữ nhật \(\Rightarrow\) \(AE=FM\)
Dễ thấy \(\Delta DFM\) vuông cân tại F \(\Rightarrow FM=DF\)
\(\Rightarrow AE=DF\) \(\Rightarrow\)tam giác vuông ADE bằng tam giác vuông DCF ( \(AE=DF;AD=DC\) \(\Rightarrow\) \(DE=CF\)
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

24 tháng 2 2018

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

30 tháng 1 2022

a.- Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=>\(\dfrac{CK}{KF}=\dfrac{DK}{BK}\) (định lí Ta-let). (1)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CK}\) (định lí Ta-let). (2)

- Từ (1) và (2) suy ra:

\(\dfrac{CK}{KF}=\dfrac{KM}{CK}\). Vậy \(CK^2=KM.KF\)

b. - Xét △KDC có:

DC//BF (ABCD là hình bình hành).

=> \(\dfrac{DK}{BK}=\dfrac{CK}{CF}\) (định lí Ta-let). (3)

- Xét △KDM có:

MD//BD (ABCD là hình bình hành).

=>\(\dfrac{DK}{BK}=\dfrac{MK}{CM}\) (định lí Ta-let). (4)

- Từ (3) và (4) suy ra:  \(\dfrac{CK}{CF}=\dfrac{MK}{CM}\)

=>\(\dfrac{CK}{CF}=\dfrac{MK}{CM}=\dfrac{CK+MK}{CF+CM}\) (t/c tỉ lệ thức).

=>\(\dfrac{CK}{CF}=\dfrac{CM}{CF+CM}\)

=>\(CK=\dfrac{CM.CF}{CF+CM}\)
=>\(\dfrac{1}{CK}=\dfrac{CF+CM}{CM.CF}\)

=>\(\dfrac{1}{CK}=\dfrac{1}{CF}+\dfrac{1}{CM}\)

NV
30 tháng 1 2022

c.

Do \(\widehat{DBC}=\widehat{CBE}\Rightarrow BC\) là phân giác trong góc \(\widehat{DBE}\) trong tam giác BDE

Theo định lý phân giác: \(\dfrac{BE}{BD}=\dfrac{CE}{CD}\) (1)

Trong tam giác MCD, do \(AF||CD\) nên theo định lý Talet:  \(\dfrac{AF}{CD}=\dfrac{MF}{MC}\)

Trong tam giác MCE, do \(BF||CE\) nên theo định lý Talet: \(\dfrac{BF}{CE}=\dfrac{MF}{MC}\)

\(\Rightarrow\dfrac{AF}{CD}=\dfrac{BF}{CE}\Rightarrow\dfrac{CE}{CD}=\dfrac{BF}{AF}\) (2)

(1);(2) \(\Rightarrow\dfrac{BF}{AF}=\dfrac{BE}{BD}\) (đpcm)