Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình của ΔAHB
Suy ra: MN//DP và MN=DP
hay DMNP là hình bình hành
Bài 1:
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ=NP và MQ//NP
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN=AC/2=BD/2(3)
Từ (1) và (3) suy ra MQ=MN
Xét tứ giác MQPN có
MQ//PN
MQ=PN
Do đó: MQPN là hình bình hành
mà MQ=MN
nên MQPN là hình thoi
Suy ra: MP⊥NQ
b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành
Gọi \(E=AD\cap BC\)
\(\Rightarrow\widehat{ADC}+\widehat{BCD}=90^0\)
\(\Rightarrow\widehat{DEC}=90^0\)
\(\Rightarrow AD\perp BC\)
học sinh tự chứng minh
\(IN\)là đường trung bình : \(\Delta ABC;IN=\frac{1}{2}BC;IN//BC\)
\(MK\)là đường trung bình : \(\Delta DBC;MK=\dfrac{1}{2}BC;MK//BC\)
\(IK\)là đường trung bình: \(\Delta BAD;IK=\dfrac{1}{2}AD;IK//AD\)
\(NM\)là đường trung bình: \(\Delta ACB;NM=\dfrac{1}{2}AD;NM//AD\)
Mà \(AD=BC\Rightarrow IN=MK=IK=NM\)
\(IN//BC\)
\(IK//AD\) \(\hept{\begin{cases}\\\end{cases}}\Rightarrow IN\perp IK\) \(\hept{\begin{cases}\\\\\end{cases}}\Rightarrow INMK\)là hình vuông
\(BC\perp AD\)
ko kẻ hình nhé:
a) vì ABCD là h/thang
mà BC//AD=> góc A= gócB=1200
=> góc C= góc D
có A+B+C+D=3600(ĐL)
1200+1200+2D=3600
2D=1200
=>C = D=600
b) Xét tam giác ABD và BCD có:
góc ABD=góc BCD
góc ADB=góc BDC
BD chung
=> 2 tam giác = nhau
=>MD=MB( 2 cạnh t/ứ)
Bn tự kẻ hình nha!!
Gọi I là trung điểm của AH
Ta có IM là đg trug bình t.giác AHB
- -> IM=1/2AB và IM sog sog vs AB
- ->IMND là hình bình hành
- ->DI sog sog vs MN(1)
Do IM sog sog vs AB->IM vuông góc vs AD
Tg ADM có các đg cao AH và MI cắt nhau tại I
- -> DI vuông góc vs AM(2)
Từ (1) và (2) suy ra AM vuông góc vs MN
Tg AMN vuông tại M
Ta có :AM^2+MN^2=AN^2
Lại có:Tg ADN vuông tại D
- ->AN^2=AD^2+DN^2+AD^2/4=4^2+3^2=25
- Vậy MA^2+NM^2=25
vì sao IMND là hình bình hành vậy.
Nếu bài này ko cm như trên mà chứng minh MA vuông góc MN thì làm như nào ạ .
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED