K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình của ΔAHB

Suy ra: MN//DP và MN=DP

hay DMNP là hình bình hành

Bài 1: 

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ=NP và MQ//NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN=AC/2=BD/2(3)

Từ (1) và (3) suy ra MQ=MN

Xét tứ giác MQPN có

MQ//PN

MQ=PN

Do đó: MQPN là hình bình hành

mà MQ=MN

nên MQPN là hình thoi

Suy ra: MP⊥NQ

b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)

mà \(AB=BC=\dfrac{AD}{2}\)

nên AE=ED=AB=BC

Xét tứ giác AECB có 

AE//CB

AE=CB

Do đó: AECB là hình bình hành

mà \(\widehat{EAB}=90^0\)

nên AECB là hình chữ nhật

mà AE=AB

nên AECB là hình vuông

Xét ΔHAD có 

N là trung điểm của AH

M là trung điểm của HD

Do đó: MN là đường trung bình của ΔHAD

Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)

mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC

nên MN//BC và MN=BC

Xét tứ giác BCMN có 

MN//BC

MN=BC

Do đó: BCMN là hình bình hành

9 tháng 9 2017

M N P Q E B A C D

Gọi \(E=AD\cap BC\)

\(\Rightarrow\widehat{ADC}+\widehat{BCD}=90^0\)

\(\Rightarrow\widehat{DEC}=90^0\)

\(\Rightarrow AD\perp BC\)

học sinh tự chứng minh

\(IN\)là đường trung bình : \(\Delta ABC;IN=\frac{1}{2}BC;IN//BC\)

\(MK\)là đường trung bình : \(\Delta DBC;MK=\dfrac{1}{2}BC;MK//BC\)

\(IK\)là đường trung bình: \(\Delta BAD;IK=\dfrac{1}{2}AD;IK//AD\)

\(NM\)là đường trung bình: \(\Delta ACB;NM=\dfrac{1}{2}AD;NM//AD\)

Mà \(AD=BC\Rightarrow IN=MK=IK=NM\)

       \(IN//BC\)

        \(IK//AD\)              \(\hept{\begin{cases}\\\end{cases}}\Rightarrow IN\perp IK\)                \(\hept{\begin{cases}\\\\\end{cases}}\Rightarrow INMK\)là hình vuông

          \(BC\perp AD\)

9 tháng 9 2017

Mình nghĩ thế

ko kẻ hình nhé:

a) vì ABCD là h/thang

mà BC//AD=> góc A= gócB=1200

=> góc C= góc D

có A+B+C+D=3600(ĐL)

1200+1200+2D=3600

2D=1200

=>C = D=600

b) Xét tam giác ABD và BCD có:

góc ABD=góc BCD

góc ADB=góc BDC

BD chung

=> 2 tam giác = nhau

=>MD=MB( 2 cạnh t/ứ)

18 tháng 9 2019

Câu c đâu bn??

15 tháng 8 2018

Bn tự kẻ hình nha!!

Gọi I là trung điểm của AH

Ta có IM là đg trug bình t.giác AHB

  • -> IM=1/2AB và IM sog sog vs AB
  • ->IMND là hình bình hành
  • ->DI sog sog vs MN(1)

Do IM sog sog vs AB->IM vuông góc vs AD

Tg ADM có các đg cao AH và MI cắt nhau tại I

  • -> DI vuông góc vs AM(2)

Từ (1) và (2) suy ra AM vuông góc vs MN

Tg AMN vuông tại M

Ta có :AM^2+MN^2=AN^2

Lại có:Tg ADN vuông tại D

  • ->AN^2=AD^2+DN^2+AD^2/4=4^2+3^2=25
  • Vậy MA^2+NM^2=25
1 tháng 10 2021

vì sao IMND là hình bình hành vậy.

Nếu bài này ko cm như trên mà chứng minh MA vuông góc MN thì làm như nào ạ .

 

14 tháng 12 2023

Bài 3:

a: Ta có: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

b: Để BD=DE=EC thì BD=DE và DE=EC

BD=DE thì ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)

nên \(\widehat{DBE}=\widehat{EBC}\)

=>\(\widehat{ABE}=\widehat{EBC}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

=>\(\widehat{EDC}=\widehat{ECD}\)

mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ECD}=\widehat{DCB}\)

=>\(\widehat{ACD}=\widehat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác từ C kẻ xuống AB

Bài 2:

a: Ta có: ABCD là hình bình hành

=>AB//CD và AB=CD(1)

Ta có: M là trung điểm của AB

=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của CD

=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=MB=NC=ND

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có AMCN là hình bình hành

=>AN//CM

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(4)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(5)

Từ (4) và (5) suy ra BF=FE=ED