Cho hình vuông ABCD cạnh 12cm. Các điểm M, N lần lượt trên các cạnh AB, AD sao cho AM = DN =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

Đặt AM=x; AN=y

MN^2=AM^2+AN^2

=>\(MN=\sqrt{x^2+y^2}\)

\(P_{AMN}=AM+AN+MN=x+y+\sqrt{x^2+y^2}=2a\)

và x+y>=2*căn xy; \(\sqrt{x^2+y^2}>=\sqrt{2xy}\)

=>\(2a=x+y+\sqrt{x^2+y^2}>=2\sqrt{xy}+\sqrt{2xy}\)

=>\(2a>=\sqrt{xy}\left(2+\sqrt{2}\right)\)

=>\(\sqrt{xy}< =\dfrac{2a}{2+\sqrt{2}}\)

=>\(S_{AMN}=\dfrac{1}{2}xy< =\dfrac{1}{2}\cdot\left(\dfrac{2a}{2+\sqrt{2}}\right)^2=\left(3-2\sqrt{2}\right)a^2\)

Dấu = xảy ra khi \(x=y=\left(2-\sqrt{2}\right)a\)

20 tháng 3 2020

Phương ơi làm được chưa. Em chưa làm được. Bài này hình như làm rồi nhưng không nhớ :<
(Hân)

20 tháng 3 2020

Chị cx chưa làm đc , mỗi ý a là làm đc thui .

Bài này đúng là làm rùi nhưng lúc đấy chị cx chưa bít làm và cô cx ko có chữa. Vậy nên giờ làm lại cx ko bít làm !!!!

10 tháng 6 2016

Xét tam giác ADB có : M là trung điểm của AB(gt) 

                                       N là trung điểm của AD(gt)

=> MN là đường trung bình của tam giác ADB ( đ/n) 

=> MN//DB và MN =1/2 DB ( t/c) 

Xét tam giác AMN và tam giác ABD có : MN // BD ( cmt)

tam giác AMN đồng dạng với tam giác ABD ( hq đ/y ta lét)   => SAMN/SABD=(1/2)^2=1/4   (1)

Xét tam giác ABD và tam giác CDBcó 

AB=CD( ABCD là hbh ) 

góc A = góc C (nt)

AD=cb(nt)

=> tam giác ABD = tam giác CDB (cgc)

=> tam giác ABD đồng dạng tam giác CDB(t/c)   

=> tam giác ABD=1/2 HBh ABCD(2)

Từ 1 2 => SAMN/SABCD=1/8

 

 

 

6 tháng 2 2022

Vẽ AH⊥BC⊥BC cắt MN tại H'

Ta có : AH'=HH'=12AH12AH(vì MN là trung điểm => AH′=12AHAH′=12AH)

Lại có:

SABC=12.AH.BC=60cm2SABC=12.AH.BC=60cm2 và SAMN=12AH′.MNSAMN=12AH′.MN.Mà

MN là đường trung bình của tam giác ABC=>MN=12BCMN=12BC

=>SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)

Vậy SAMN=15cm2

16 tháng 10 2020

Bài 1:

a) Đặt \(6x+7=y\)

\(PT\Leftrightarrow y^2\left(y-1\right)\left(y+1\right)=72\)

\(\Leftrightarrow y^4-y^2-72=0\)

\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)

Mà \(y^2+8>0\left(\forall y\right)\)

\(\Rightarrow y^2-9=0\Leftrightarrow\left(y-3\right)\left(y+3\right)=0\Leftrightarrow\left(6x+4\right)\left(6x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}6x+4=0\\6x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}\)

b) đk: \(x\ne\left\{-4;-5;-6;-7\right\}\)

\(PT\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)

16 tháng 10 2020

Bài 2 không tiện vẽ hình nên thôi nhờ godd khác:)

Bài 3:

Ta có:

\(a_n=1+2+3+...+n\)

\(a_{n+1}=1+2+3+...+n+\left(n+1\right)\)

\(\Rightarrow a_n+a_{n+1}=2\cdot\left(1+2+3+...+n\right)+\left(n+1\right)\)

\(=2\cdot\frac{n\left(n+1\right)}{2}+n+1\)

\(=n^2+n+n+1=\left(n+1\right)^2\)

Là SCP => đpcm