Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ sẽ chứng minh câu a,b. Còn câu c,d thì cậu tự chứng minh được.Không cần GT, KL nhé.
A B C D E x 9 12 15
a) Ta có: Theo định lý Pitagore đảo ta có:
\(9^2+12^2=81+144=225=15^2\)
\(\Rightarrow\) Tam giác ABC là tam giác vuông.
b) Ta có:
AB vuông góc với AC ; Cx vuông góc với AC
\(\Rightarrow\) AB song song với Cx
\(\Rightarrow\)ABD = DCE
Xét tam giác ABD và tam giác ECD có:
ABD = ECD ( CMT)
BD = EC ( gt )
ADB = EDC ( 2 góc đối đỉnh )
\(\Rightarrow\) tam giác ABD = tam giác ECD ( g.c.g )
\(\Rightarrow\) AB = EC ( 2 cạnh tương ứng )
a: BC=15cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
a, tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (đl Pytago)
mà AB = 5; AC = 12
=> 5^2 + 12^2 = BC^2
=> BC^2 = 25 + 144
=> BC^2 = 169
=> BC = 13 do BC > 0
b, xét tam giác ABC và tam giác ADC có : AC chung
AB = AD (gt)
góc BAC = góc DAC = 90
=> tam giác ABC = tam giác ADC (2cgv)
c, AE // BC (gt)
=> góc AEC = góc ACB (slt)
mà góc ACB = góc ACD do tam giác ABC = tam giác ADC (Câu a)
=> góc EAC = góc ACD (tcbc)
=> tam giác ACE cân tại E (tc)
d, cm E là trung điểm của DC
A B C
a) Áp dụng định lý Py - ta - go vào tam giác ABC vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Leftrightarrow BC=\sqrt{5^2+12^2}\)
\(\Leftrightarrow BC=\sqrt{25+144}\)
\(\Leftrightarrow BC=\sqrt{169}\)
\(\Leftrightarrow BC=13\)
Vậy BC = 13cm
a/ Ta có \(\widehat{A}=180^o-\widehat{B}-\widehat{C}\)(tổng ba góc của một tam giác)
=> \(\widehat{A}=180^o-40^o-50^o\)
=> \(\widehat{A}=90^o\)=> \(\Delta ABC\)vuông tại A
=> AB2 + AC2 = BC2 (định lí Pitago)
=> AC2 = BC2 - AB2
=> AC2 = 122 - 92
=> AC2 = 144 - 81
=> AC2 = 63
=> AC = \(\sqrt{63}\)(cm)
a) Áp dụng định lý Py-ta-go cho \(\Delta\)vuông ABC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13\left(cm\right)\)
b) Xét \(\Delta ABC\)và \(\Delta ADC\)có:
\(\hept{\begin{cases}AB=AD\left(gt\right)\\gócBAC=gócDAC\left(=90^0\right)\\AC:chung\end{cases}}\)
\(\Rightarrow\Delta ABC=\Delta ADC\left(c.g.c\right)-\left(đpcm\right)\)
c) Xét \(\Delta BDC\)có: \(\hept{\begin{cases}\text{A là trung điểm BD}\\AE//BC\left(gt\right)\end{cases}}\)
\(\Rightarrow\text{E là trung điểm CD}\left(t/c\right)\)
Xét \(\Delta ADC\)vuông tại A có AE là đường trung tuyến ứng cạnh DC
\(\Rightarrow AE=\frac{1}{2}CD\left(t/c\right)=EC\left(\text{E là trung điểm CD}\right)\)
\(\Rightarrow\Delta AEC\)cân tại E (đpcm)
d) Gọi giao của AC và BE là O
Xét \(\Delta DBC\)có:\(\hept{\begin{cases}\text{BE là đường trung tuyến ứng cạnh CD }\left(gt\right)\\\text{CA là đường trung tuyến ứng cạnh BD }\left(gt\right)\end{cases}}\)
\(\Rightarrow\)O là trọng tâm của \(\Delta DBC\)
Mà DF là đường trung tuyến ứng cạnh BC
\(\Rightarrow\)CA, DF, BE cùng đồng quy tại 1 điểm (đpcm)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=6\sqrt{21}\)cm
b, Xét tam giác ABD và tam giác HBD có
BD _ chung
^ABD = ^HBD
Vậy tam giác ABD = tam giác HBD (ch-gn)
=> BA = BH ( 2 cạnh tương ứng )
2 tam giác chung ABCD là sao bn?