K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a, Vì BC và AD cùng vuông góc với AB nên BC//AD

Do đó AD//EF

b, \(\widehat{BAE}=360^0-\widehat{BAD}-\widehat{DAE}=360^0-90^0-130^0=140^0\)

24 tháng 10 2021

Anh ko kẻ thêm à

Sửa đề; DH vuông góc EF tại H

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

Do đó: ΔDHE=ΔDHF

=>HE=HF

b: Ta có: HE=HF

H nằm giữa E và F

Do đó: H là trung điểm của EF

=>\(HE=HF=\dfrac{EF}{2}=4\left(cm\right)\)

ΔDHE vuông tại H

=>\(DH^2+HE^2=DE^2\)

=>\(DH^2=5^2-4^2=9\)

=>\(DH=\sqrt{9}=3\left(cm\right)\)

c: Ta có: \(DM=MF=\dfrac{DF}{2}\)

\(DN=NE=\dfrac{DE}{2}\)

mà DF=DE

nên DM=MF=DN=NE

Xét ΔDME và ΔDNF có

DM=DN

\(\widehat{MDE}\) chung

DE=DF

Do đó: ΔDME=ΔDNF

=>EM=FN và \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEF và ΔMFE có

NE=MF

NF=ME

EF chung

Do đó: ΔNEF=ΔMFE

=>\(\widehat{NFE}=\widehat{MEF}\)

=>\(\widehat{KEF}=\widehat{KFE}\)

=>ΔKEF cân tại K

31 tháng 7 2019
Mọi người trả lời giùm minh đi minh đang có viêc gâp
1 tháng 8 2019

A B C D E F

a) Ez bạn tự làm nha, mình làm sơ sơ cũng 3-4 cách rồi.:)

b) Tam giác ABC cân tại A có đường p/g góc A xuất phát từ đỉnh đồng thời là đường trung trực nên \(AD\perp BC\). và BD = CD = BC/2

Xét tam giác ABD vuông tại D (chứng minh trên), theo định lí Pythagoras:

\(AB^2=BD^2+DA^2\Leftrightarrow10^2=\frac{BC^2}{4}+DA^2\)

\(=36+DA^2\Rightarrow AD=8\) (cm) (khúc này có tính nhầm gì thì tự sửa lại nha!)

Theo đề bài ta có AB = AC = 10 < BC = 12

Hay AC < BC. Theo quan hệ giữa góc và cạnh đối diện trong tam giác ABC ta có \(\widehat{ABC}< \widehat{BAC}\) (Cái khúc này không chắc, sai thì thôi)

c) Hướng dẫn:

\(\Delta\)EDB = \(\Delta\)FDC (cạnh huyền - góc nhọn)

Suy ra EB = FC. Từ đó suy ra AE = AF. 

Suy ra tam giác AEF cân tại A suy ra \(\widehat{AEF}=\frac{180^o-\widehat{A}}{2}\) (1)

Mặt khác tam giác ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra đpcm

3 tháng 2 2019

tu  ve hinh :

cau b la vuong goc phai k

a, tamgiac ABC can tai A(gt) => AB = AC va goc ABC = goc ACB (dn)

goc ADB = goc ADC do AD | BC (GT)

=> tamgiac ADB = tamgiac ADC (ch - gn)

=> BD = DC (dn)

b, xet tamgiac BHD va tamgiac CKD co :  BD = DC (Cau a)

goc ABC = goc ACB (cau a)

goc BHD = goc DKC = 90 do HD | AB va HK | AC (gt)

=> tamgiac BHD = tamgiac CKD (ch - gn)

=> HD = DK (dn)

c, xet tamgiac AHD va tamgiac AKD co : AD chung

HD = DK (cau b) 

goc AHD = goc AKD = 90 do HD | AB va HK | AC (gt) 

=> tamgiac AHD = tamgiac AKD  (ch - cgv)

=> tamgiac AHK can tai A (dn)

=> goc AHK = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc ABC = (180 - goc BAC) : 2

=> goc AHK = goc ABC  2 goc nay dong vi

=> HK // BC (tc)

d, tu ap dung py-ta-go 

4 tháng 2 2019

bài 2 nữa ạ

6 tháng 7 2017

a) BC^2= Ac^2+Ab^2=> Bc^2=74=> Bc=căn 74.                                  b)vì Ad là phân giác nên góc BAE và góc FAC bằng 45. Hai tam giác ABE và AFC đều vuông và đều có 1 góc 45 nên => tam giác vuông cân. Câu c) AD vuông góc Ax ( hai tia phân giác trong và phan giác ngoài của cùng 1 góc thì vuông góc nhau). Xét 2 tam giác vuông FAK và FEC có. FA=FC( theo câu b). Góc FCE = AFK cùng phụ FEC( do Tg FEI vuôg tại I). Và FAK=EFC=90 => tg AFK=tgEFC(g.c.g)=> AK=EF. phiền bạn tự trình bày lại cho hợp lí. Chúc bạn học tốt

6 tháng 7 2017

cảm ơn bạn đã đã giải giúp mình

29 tháng 4 2019

a)Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2<=>BC2-AB2=AC2=>AC2=152-122=81=>AC=9

b) Xét \(\Delta\)DBM và \(\Delta\)DCM:

                 DMB=DMC=90

                 BM=CM( M là trung điểm BC)

                 DM:chung

=>\(\Delta\)DBM=\(\Delta\)DCM(c-g-c)=>DC=DB

Xét \(\Delta\)ACD:A=90=>DC>DA

Mà DC=DB(chứng minh trên)

Nên:AD<DB

c)Xét \(\Delta\)BCG:BA \(\perp\)CG;GM\(\perp\)BC

Mà BA cắt GM tại D 

Nên: D là trực tâm tam giác BCG

Lại có:CH\(\perp\)GB

Suy ra: C;D;H thẳng hàng

c)Xét \(\Delta\)GBC:GM là đường cao đồng thời là đường trung tuyến

=>\(\Delta\)GBC cân tại G=>GM là đường phân giác

  Xét \(\Delta\)GDA và \(\Delta\)GDH:

               GAD=GHD=90

               GD:chung

                AGD=HGD

=>\(\Delta\)GAD=\(\Delta\)GDH(cạnh huyền- góc nhọn)

=>AD=HD=>DAH=DHA=(180-HDA)/2

Xét \(\Delta\)DBC:DC=DB(chứng minh trên)=>DCB=DBC=(180-BDC)/2

Do HDA=BDC(đối đỉnh)

Nên AHD=BCD

Mà C;H;D thẳng hàng(chứng minh trên)

Suy ra AH//BC

29 tháng 4 2019

A C G A H M D

9 tháng 5 2018

A B C E M P Q

Gọi P là trung điểm của BE. Từ P kẻ 1 tia vuông góc với BE cắt đoạn AB tại Q.

Xét tam giác BEM: ^BME=900, P là trung điểm của BE => PM=PB (1)

Ta tính được ^QBP = ^ABC - ^EBC = 750-300 = 450

Mà PQ vuông góc PB => Tam giác BPQ vuông cân tại P=> BP=PQ (2)

Từ (1) và (2) => PM=PQ => Tam giác PQM cân tại P

Dễ thấy ^MPE=600 => ^QPM=^QPE+^MPE = 900+600=1500

=> ^PQM= (180- ^QPM)/2 = 150

=> ^BQM= ^PQM + ^BQP = 150+450 = 600

Xét tam giác ABC: ^ABC=750; ^ACB=450 => ^BAC=600

Từ đó ta có: ^BQM=^BAC. Mà 2 góc này so le trg => MQ // AC

Lại có M là trung điểm của BC => Q là trung điểm của AC

=> PQ là đường trung bình của tam giác ABE => PQ//AE

Do PQ vuông góc BE => AE vuông góc BE (Quan hệ //, vuông góc)

=> ^AEB=900 (đpcm).