K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Đáp án D

Gọi J là trung điểm CD; G là giao điểm của MK và AJ; I là giao điểm của MK và AO.

Gọi N, P lần lượt là giao điểm của ME với AC, MF với AD. Khi đó (MNP) chính là thiết diện khi cắt tứ diện đều ABCD bởi mp (MEF). Vì BE=BF=2a nên ta cũng có MN=MP, hay tam giác MNP cân tại M, đường cao MG.

Để tính diện tích MNP, ta cần đi tìm MG và NP.

Vì G là giao điểm của các đường trung tuyến AJ và MK trong tam giác ABK nên G là trọng tâm của tam giác ABK, do đó 

và chứng minh dựa vào các tam giác đồng dạng, tính chất tỉ số đồng dạng và các đường cao; đường cao AG, AJ trong tam giác ANP và ACD).

Áp dụng nhanh: tam giác đều cạnh a có độ dài mỗi đường cao là 

30 tháng 8 2017

Đáp án là D

5 tháng 6 2018

Đáp án C 

Xét trường hợp  A P P C = k   , lúc này M P // B C  nên  B C // M N P   .

Ta có:  N ∈ M N P ∩ B C D B C // M N P B C ⊂ B C D ⇒ B C D ∩ M N P = N Q // B C ,   Q ∈ B D   .

Thiết diện là tứ giác MPNQ.

Xét trường hợp A P P C ≠ k .

Trong A B C  gọi R = B C ∩ M P .

Trong   B C D gọi   Q = N R ∩ B D thì thiết diện là tứ giác MNPQ.

Gọi  K = M N ∩ P Q   . Ta có S M N P S M N P Q = P K P Q .

Do   A M N B = C N N D nên theo định lí Thales đảo thì A C , N M , B D  lần lượt thuộc ba mặt phẳng song song với nhau và đường thẳng PQ cắt ba mặt phẳng này tương ứng tại P, K, Q nên áp dụng định lí Thales ta được  P K K Q = A M M B = C N N D = k

⇒ P K P Q = P K P K + K Q = P K K Q P K K Q + 1 = k k + 1

2 tháng 5 2017

15 tháng 4 2017

20 tháng 12 2018

Chọn đáp án A

Vậy thiết diện của tứ diện bị cắt bởi mặt phẳng (MNP) là tứ giác MRNP

28 tháng 6 2019

15 tháng 5 2017

Đáp án A

Thiết diện là Δ M N P

10 tháng 1 2019

Đáp án A

Hiển nhiên thiết diện của hình tứ diện A B C D  khi cắt bởi mặt phẳng M N P  là một tam giác