Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Chiều cao hình trụ là h=4a. Bán kính đáy hình trụ là r=2a
Diện tích xung quanh của hình trụ là S = 2 π r h = 2 π .2 a .4 a = 16 π a 2
Chọn C.
Phương pháp
Công thức tính diện tích xung quanh hình trụ S x q = 2 π R h
Cách giải:
Do thiết diện là hình vuông cạnh a nên bán kính đáy bằng a 2 và chiều cao h = a.
Diện tích xunh quanh: S = 2 π . a 2 . a = π a 2
Đáp án D
Δ S A B vuông cân tại S , A B = 4 a
⇒ S A = S B = 4 a 2 = 2 a 2
⇒ l = 2 a 2
Δ S A C cân tại S , A S C ^ = 120 0
⇒ S A C ^ = S C A ^ = 30 0
⇒ c o s S A O ^ = O A S A hay 3 2 = R 2 a 2 ⇒ R = a 6
S x q = π R l = π . a 6 .2 a 2 = π 4 a 2 3 .
Đáp án C.
Gọi R,h,l lần lượt là bán kính đáy, chiều cao, đường sinh của hình trụ.
Ta có diện tích xung quanh S x q = 4 π ⇔ 2 πRl = 4 π ⇒ Rl = 2 .
Giả sử AB là một dây cung của đường tròn đáy của hình trụ và căng một cung 120 ° . Vì ABA’A’ là hình chữ nhật có AA' = h = l.
Xét tam giác OAB cân tại O, có O A = O B = R A O B ^ = 120 ° ⇒ A B = R 3 .
Vậy diện tích cần tính là S A B B ' A ' = A B . A A ' = R 3 . 1 = 2 3 .
Hình trụ có thiết diện đi qua trục là hình vuông có cạnh bằng = 4 a ⇒ 2 R = h = 4 a ⇒ R = 2 a với R, h lần lượt là bán kính đáy và chiều cao của hình trụ.
Chọn D.