Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OE,OF,OG,OH lần lượt là đg cao của các tam giác vuông DOC,AOB,AOD,BOC.
Vì OE=OF=OG=OH=h
và:AC=m;OA=OC-->OA=OC=m/2
tg tự với DB=n;DO=DB ta cũng có:
DO=OB=n/2
Xét tam giác vuông AOB (O= 90 độ do hình thoi có 2 đg chéo vuông góc)
và OF là đường cao có:
1/OF2 =1/OA^2+1/OB^2
-->1/h^2=1/\(\left(\frac{m}{2}\right)\)^2+1/(n/2)^2 (1)
CM tương tự vs các tam giác vuông còn lại đều đc kquar như trên đánh số (1),(2),(3),(4)
Cộng (1),(2), (3),(4) ta đc:4/h^2 =16/m^2+16/n^2
Chia cả 2 vế cho 16 ta đc điều phải cm
Lời giải:
Vì $ABCD$ là hình thoi nên $AC\perp BD$ tại $O$ và $AC,BD$ cắt nhau tại trung điểm $O$ của mỗi đường
$\Rightarrow AO=\frac{AC}{2}=\frac{m}{2}; DO=\frac{BD}{2}=\frac{n}{2}$
Xét tam giác $AOD$ vuông tại $O$, áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{d(O, AD)^2}=\frac{1}{OA^2}+\frac{1}{OD^2}$
$\Leftrightarrow \frac{1}{h^2}=\frac{1}{(\frac{m}{2})^2}+\frac{1}{(\frac{n}{2})^2}=\frac{4}{m^2}+\frac{4}{n^2}$
$\Leftrightarrow \frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}$ (đpcm)
Bài 1:
Vì \(DH\parallel AC\Rightarrow \frac{BD}{BA}=\frac{BH}{BC}\) (định lý Ta-lét)
Vì \(EH\parallel BA\Rightarrow \frac{EC}{CA}=\frac{CH}{CB}\) (Ta-lét)
\(\Rightarrow \frac{BD}{BA}.\frac{CA}{EC}=\frac{BH}{CH}(1)\)
Theo công thức lượng trong tam giác vuông (sgk) thì :
\(\left\{\begin{matrix} AB^2=BH.BC\\ AC^2=CH.CB\end{matrix}\right.\Rightarrow \frac{BH}{CH}=\frac{AB^2}{AC^2}(2)\)
Từ \((1);(2)\Rightarrow \frac{BD}{BA}.\frac{CA}{EC}=\frac{AB^2}{AC^2}\)
\(\Rightarrow \frac{BD}{EC}=\frac{AB^3}{AC^3}=\left(\frac{AB}{AC}\right)^3\) (đpcm)
b)
Ta có: \(BH+CH=BC=10\)
\(BH.CH=AH^2=25\) (theo hệ thức lượng)
\(\Rightarrow BH=CH=5\) (cm)
Theo hệ thức lượng:
\(\frac{1}{DH^2}=\frac{1}{BH^2}+\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{5^2}\Rightarrow DH=\frac{5}{\sqrt{2}}\)
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}=\frac{1}{5^2}+\frac{1}{5^2}\Rightarrow HE=\frac{5}{\sqrt{2}}\)
\(S_{ADHE}=DH.HE=\frac{25}{2}\) (cm vuông)
1c)
Theo tính chất đường phân giác:
\(\frac{KI}{BK}=\frac{CI}{CB}\Rightarrow \frac{BI}{BK}=\frac{CI+CB}{CB}\)
\(\frac{KF}{CK}=\frac{BF}{BC}\Rightarrow \frac{CF}{CK}=\frac{BF+BC}{BC}\)
\(\Rightarrow \frac{BI}{BK}.\frac{CF}{CK}=\frac{(CI+CB)(BF+BC)}{BC^2}(1)\)
Cũng theo tính chất tia phân giác:
\(\frac{CI}{AI}=\frac{BC}{AB}\Rightarrow \frac{CI}{AC}=\frac{BC}{BC+AB}(2)\)
\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow \frac{BF}{BA}=\frac{BC}{AC+BC}(3)\)
Từ (1);(2);(3) , thay thế và rút gọn suy ra:
\(\frac{BI}{BK}.\frac{CF}{CK}=\frac{(AB+BC+AC)^2}{(AB+BC)(AC+BC)}\)
\(=\frac{AB^2+AC^2+BC^2+2(AB.AC+AB.BC+AC.BC)}{AB.AC+AB.BC+AC.BC+BC^2}\)
\(=\frac{2BC^2+2(AB.AC+AB.BC+AC.BC)}{AB.AC+AB.BC+AC.BC+BC^2}=2\) (theo định lý Pitago)
Do đó:
\(BI.CF=2BK.CK\) (đpcm)
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).