K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2022

a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0;\widehat{AQP}=\widehat{BQM}\).

\(\Rightarrow\)△APQ∼△BMQ (g-g)

\(\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\)

△ABQ và △PMQ có: \(\dfrac{QP}{QA}=\dfrac{QM}{QB};\widehat{AQB}=\widehat{PQM}\)

\(\Rightarrow\)△ABQ∼△PMQ (c-g-c).

 

25 tháng 5 2022

b) △ABQ∼△PMQ \(\Rightarrow\dfrac{PM}{AB}=\dfrac{PQ}{AQ};\widehat{BAQ}=\widehat{MPQ}\Rightarrow MP=\dfrac{PQ}{AQ}.AB\)

△APQ và △BPA có: \(\widehat{QAP}=\widehat{ABP}=45^0;\widehat{APB}\) là góc chung.

\(\Rightarrow\)△APQ∼△BPA (g-g)

\(\Rightarrow\widehat{AQP}=\widehat{BAP}\)

\(\widehat{APM}=\widehat{APQ}+\widehat{MPQ}=180^0-45^0-\widehat{AQP}+\widehat{BAQ}=180^0-45^0-\left(\widehat{BAP}-\widehat{BAQ}\right)=180^0-45^0-45^0=90^0\)

\(\Rightarrow\)MP⊥AN tại P.

△MPN và △AHN có: \(\widehat{MPN}=\widehat{AHN}=90^0;\widehat{ANM}\) là góc chung.

\(\Rightarrow\)△MPN∼△AHN (g-g)

\(\Rightarrow\dfrac{AH}{MP}=\dfrac{AN}{MN};\dfrac{NP}{NH}=\dfrac{NM}{NA}\Rightarrow\dfrac{NP}{NM}=\dfrac{NH}{NA}\)

△APQ và △AMN có: \(\dfrac{NP}{NM}=\dfrac{NH}{NA};\widehat{MAN}\) là góc chung.

\(\Rightarrow\)△APQ∼△AMN (c-g-c)

\(\Rightarrow\dfrac{AQ}{AN}=\dfrac{PQ}{MN}\Rightarrow\dfrac{MN}{AN}=\dfrac{PQ}{AQ}\)

\(\dfrac{AH}{MP}=\dfrac{AN}{MN}\Rightarrow AH=MP.\dfrac{AN}{MN}=\dfrac{PQ}{AQ}.AB.\dfrac{AN}{AM}=AB\) không đổi.

20 tháng 7 2015

Một bài đã làm không xong mà bạn ra hai bài thì ............

28 tháng 9 2018

Bài 1: Con tham khảo tại câu dưới đây nhé.

Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath

28 tháng 9 2018

Con tham khảo tại câu dưới đây nhé.

Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath

23 tháng 4 2017

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định nghĩa và giả thiết của hình vuông ABCD ta được:

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADN( g - c - g )

Do đó AM = AN (cặp cạnh tương ứng bằng nhau)

3 tháng 5 2017

* Trường hợp góc B nhọn:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét  △ AMB và △ AND, ta có:

∠ (AMB) =  ∠ (AND) = 90 0

B = D (t/chất hình bình hành) ⇒  △ AMB đồng dạng  △ AND (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà AD = BC (t/chất hình hình hành)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có: AB // CD (gt)

AN ⊥ CD (gt)

Suy ra: AN ⊥ AB hay  ∠ (NAB) =  90 0

suy ra:  ∠ NAM +  ∠ MAB =  90 0  (1)

Trong tam giác vuông AMB ta có  ∠ ABM =  90 0

Suy ra:  ∠ (MAB) +  ∠ B = 90 0 (2)

Từ (1) và (2) suy ra:  ∠ NAM =  ∠ B

Xét  △ ABC và  △ MAN ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (chứng minh trên)

∠ (NAM) =  ∠ B (chứng minh trên)

Vậy  △ ABC đồng dạng  △ MAN (c.g.c)

* Trường hợp góc B tù:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét △ MAN và  △ AND, ta có:

∠ (AMB) = ∠ (AND) = 90 0

∠ (ABM) =  ∠ (ADN) (vì cùng bằng C)

⇒ △ AMB đông dạng  △ AND (g.g)

Suy ra:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Mà AD = BC (t/chẩt hình bình hành)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì AB //CD nên (ABC) + C = 180 0  (3)

Tứ giác AMCN có  ∠ (AMC) =  ∠ (AND) =  90 0

Suy ra:  ∠ (MAN) + C =  180 0  (4)

Từ (3) và (4) suy ra: (MAN) = (ABC)

Xét △ AMN và  △ ABC, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (chứng minh trên)

∠ (MAN) =  ∠ (ABC) (chứng minh trên)

Vậy  △ MAN đồng dạng  △ ABC (c.g.c)