Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $K$ là giao điểm $AC$ và $BD$ thì $K$ là trung điểm mỗi đường và $AC\perp BD$ tại $K$
Vì $ABCD$ là hình thoi nên $\widehat{DAK}=\frac{1}{2}\widehat{A}=30^0$
$\frac{AK}{AD}=\cos \widehat{DAK}=\cos 30^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AK=\frac{\sqrt{3}}{2}AD=\frac{\sqrt{3}}{2}a$
$\Rightarrow |\overrightarrow{AC}|=AC=2AK=\sqrt{3}a$
b.
$BK=\sqrt{AB^2-AK^2}=\sqrt{a^2-(\frac{\sqrt{3}}{2}a)^2}=\frac{a}{2}$
$S_{ABC}=\frac{BK.AC}{2}=\frac{AH.BC}{2}$
$\Leftrightarrow \frac{a}{2}.\sqrt{3}a=AH.a$
$\Leftrightarrow AH=\frac{\sqrt{3}}{2}a$ hay $|\overrightarrow{AH}|=\frac{\sqrt{3}}{2}a$
Chọn A.
Do ABCD là hình thoi, có BAD = 600 nên góc ABC = 1200.
Theo định lí hàm cosin, ta có
AC2 = AB2 + BC2 - 2AB.BC.cosABC = 12 + 12 - 2.1.1.cos1200 = 3
Suy ra .
a. Dễ dàng chứng minh hai tam giác vuông ABE và BCF bằng nhau (c.g.c)
\(\Rightarrow\widehat{AEB}=\widehat{BFC}\)
Mà \(\widehat{AEB}+\widehat{AEC}=180^0\Rightarrow\widehat{BFC}+\widehat{AEC}=180^0\)
\(\Rightarrow\widehat{EHF}=360^0-\left(\widehat{C}+\widehat{BFC}+\widehat{AED}\right)=90^0\)
Hay \(AE\perp BF\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ABE:
\(AB^2=AH.AE\Rightarrow AH=\dfrac{AB^2}{AE}\Rightarrow\dfrac{AH}{AE}=\dfrac{AB^2}{AE^2}=\dfrac{AB^2}{AB^2+BE^2}=\dfrac{AB^2}{AB^2+\left(\dfrac{AB}{2}\right)^2}=\dfrac{4}{5}\)
\(\dfrac{BH}{BF}=\dfrac{BH}{AE}=\dfrac{\dfrac{AB.BE}{AE}}{AE}=\dfrac{AB.BE}{AE^2}=\dfrac{AB.\dfrac{1}{2}AB}{AB^2+\left(\dfrac{1}{2}AB\right)^2}=\dfrac{2}{5}\)
c. Hai tam giác vuông ABH và DAK đồng dạng (\(\widehat{ADK}\) và \(\widehat{BAH}\) cùng phụ \(\widehat{DAK}\))
\(\Rightarrow\dfrac{AK}{AD}=\dfrac{BH}{AB}\Rightarrow AK=\dfrac{AD.BH}{AB}=BH\)
Mà \(tan\widehat{BAH}=\dfrac{BH}{AH}=\dfrac{BE}{AB}=\dfrac{1}{2}\Rightarrow BH=\dfrac{1}{2}AH\)
\(\Rightarrow AK=\dfrac{1}{2}AH\) hay K là trung điểm AH