K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

1/xét tam giác DEC có HK là đường trung bình

=>HK//DC

    HK=1/2DC

Mà AB=1/2DC

      AB//DC 

=>HK=AB

    HK//AB

=>ABKH là hình bình hành

2/ Do HK//AB(cmt)

    Mà AB vuông góc với AD

    =>HK vuông góc với AD

    =>H là trực tâm của tam giá ADK

    =>AH vuông góc với DK

     Mà AH//KB (do ABKH là hình bình hành)

     =>BK vuông góc với DK

     =>Góc BKD =90 độ

10 tháng 9 2018

Đề của bạn sai. Bài này chắc giống với bài sau:

Câu hỏi của hoang duong sang - Toán lớp 8 - Học toán với OnlineMath

Sửa đề: DH vuông góc AC

1: Xét ΔHDC có

M,N lần lượt là trung điểm của HD,HC

nên MN là đường trung bình

=>MN//DC và MN=DC/2

=>MN//AB và MN=AB

=>ABNM là hình bình hành

2: NM//AB

=>NM vuông góc AD

Xét ΔAND có

DH,NM là các đường cao

DH cắt NM tại M

=>M là trực tâm

3: Xét ΔHDC có

E,N lần lượt là trung điểm của CD,CH

nên EN là đường trung bình

=>EN//HD và EN=HD/2

=>EN//HM và EN=HM

=>HMEN là hình bình hành

=>MN đi qua trung điểm của HE

29 tháng 1 2023

thanks b nha :))

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình hành.b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hìnhgì?Bài 9: Cho tam giác ABC, trung tuyến AM....
Đọc tiếp

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.

11
3 tháng 3 2020

Bài 12:

:v Mình sửa P là trung điểm của EG

A B C D E O Q N F G M I 1 2 P

a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)

Xét tam giác EAC và tam giác BAG có:

\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)

\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )

+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG 

Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)

Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )

Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )

\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)

Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)

\(\Rightarrow\widehat{IOC}=90^0\)

\(\Rightarrow BG\perp EC\)

b) Vì ABDE là hình vuông (gt)

\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)

Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)

\(\Rightarrow QM\)là đường trung bình của tam giác EBC

\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)

CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)

Mà EC=BG (cm câu a )

\(\Rightarrow QM=MN=NP=PQ\)

Xét tứ giác MNPQ  có \(QM=MN=NP=PQ\left(cmt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)

CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )

Mà \(BG\perp EC\left(cmt\right)\)

\(\Rightarrow MN\perp MQ\)

\(\Rightarrow\widehat{QMN}=90^0\)(2)

Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb ) 

\(\)

4 tháng 3 2020

Bài 11:

A B C H D P E Q

a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{DAE}=180^0\)

\(\Rightarrow D,A,E\)thẳng hàng

b) Vì AHBD là hình chữ nhật (gt)

\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)

Mà P là trung điểm của AB (gt)

\(\Rightarrow P\)là trung điểm của DH  (1)

\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)

\(\Rightarrow PH=PA\)

\(\Rightarrow P\in\)đường trung trục của AH

CMTT Q thuộc đường trung trực của AH

\(\Rightarrow PQ\)là đường trung trực của AH

c)  Từ (1) => P thuộc DH

=> D,P,H thẳng hàng

d) Vì ABCD là hình chữ nhật (gt)

=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ

=> góc DHA= 45 độ

CMTT AHE =45 độ

=> góc DHA+ góc AHE=90 độ

Hay góc DHE=90 độ

=> DH vuông góc với HE