K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

a, E là trung điểm của AB (gt) \(\Rightarrow AE=EB=\frac{1}{2}AB\)

\(AB=2AD\left(gt\right)\Rightarrow AD=\frac{1}{2}AB\)

Do đó: \(AE=AD\Rightarrow\Delta AED\) cân tại A \(\Rightarrow\widehat{AED}=\widehat{ADE}\) (tính chất tam giác cân) (1)

ABCD là hình bình hành(gt) \(\Rightarrow AB//CD\Rightarrow\widehat{AED}=\widehat{EDC}\) ( 2 góc so le trong ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{EDC}\) mà tia DE nằm giữa 2 tia DA,DC \(\Rightarrow\)AE là tia phân giác của \(\widehat{ADC}\)

Vậy tia phân giác của \(\widehat{ADC}\) đi qua trung điểm E của AB.

b, ABCD là hình bình hành(gt) \(\Rightarrow AB=DC\)

F là trung điểm của DC (gt) \(\Rightarrow FD=FC=\frac{1}{2}DC=\frac{1}{2}AB=AD\)

Do đó: \(\Delta ADF\) cân tại D 

\(AB//DC\left(cmt\right)\Rightarrow\widehat{BAD}+\widehat{ADF}=180^0\)

                                 \(\Rightarrow120^0+\widehat{ADF}=180^0\) (vì \(\widehat{BAD}=120^0\) )

                                 \(\Rightarrow\widehat{ADF}=60^0\)

Ta có:  \(\Delta ADF\) cân tại D và \(\widehat{ADF}=60^0\left(cmt\right)\Rightarrow\Delta ADF\) đều

\(\Rightarrow AF=DF=AD\) \(\left(ĐN\right)\)

Mặt khác, DF = 1/2 DC nên AF = 1/2 DC

\(\Delta ADC\)có trung tuyến AF = 1/2 DC nên \(\Delta ADC\)vuông tại A

Vậy \(AD\perp AC.\)

Mong bạn hiêu bài và chúc bạn học tốt.

4 tháng 3 2022

a) -Qua B kẻ đường thẳng vuông góc với DC tại E.

-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)

\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\)\(AB=ED=4\left(cm\right)\)

-Xét △BEC vuông tại E:

\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)

\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)

\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)

\(\Rightarrow BE^2=13^2-5^2=144\)

\(\Rightarrow BE=AD=12\left(cm\right)\)

b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)

c) -Đề sai.

14 tháng 11 2017

A B N C D M
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
25 tháng 9 2021

Theo đề ta suy ra MD là khoảng cách từ M đến DC, ME là khoảng cách từ M đến EC

Mà CM là phân giác góc ECD nên ME=MD=MA

Tam giác AED có trung tuyến bằng nửa cạnh tương ứng ---> tam giác AED vuông tại E

Vậy góc AED là 90 độ nha

11 tháng 8 2016

ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc

3 tháng 8 2017

kéo dài DA và CB cắt nhau tại K 

AB là đường trung bình ( AB//DC và 2AB = DC) 

=> B là trung điểm KC 

=> DB là trung tuyến  ΔKDC vuông tại D 

=> DB = BC = DC 

=> tam giác DBC đều 

Vậy góc KCD= 60độ 

tổng 4 góc trong tứ giác ABCD = 360độ 

=> góc ABC = 120độ

cách 2

Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật

nên ^ABH=90* (1)

Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)

Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*