Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)
Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)
Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)
ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)
\(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)
\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)
\(\Rightarrow\widehat{ABC}=150^0\)
b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)
Diện tích hình thang ABCD là:
\(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\)
Chúc bạn học tốt.
(hình tự vẽ nhé)
a) Số đo góc B đề cho rồi mà.
Ta có: DB = DC và BD _|_ DC
=> \(\Delta\)BDC vuông cân tại D
=> DBC^ = DCB^
Mà DBC^ + DCB^ = 90o
2* DBC^ = 90o
DBC^ = 45o
=> DCB^ = DBC^ = 45o
b) ABCD là hình thang => AD // BC
=> DBC^ = ADB^ = 45o (sole trong)
Ta có: ABD^ + DBC^ = ABC^
ABD^ = ABC^ - DBC^ = 90o - 45o = 45o
=> ADB^ = ABD^ = 45o
=> \(\Delta\)BAD cân tại A
=> AD = AB
c) Có sai đề ko chứ trong hình tớ vẽ ko như vậy.