Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Do I là trung điểm của DC nên ta có:
Lại có:
suy ra
Vậy AI ⊥ BD.
Lời giải:
\(|2\overrightarrow{AM}+\frac{1}{2}\overrightarrow{DC}|=|\overrightarrow{AD}+\overrightarrow{DN}|=|\overrightarrow{AN}|=AN\)
Áp dụng định lý Pitago cho tam giác $ADN$ vuông tại $D$ ta có:
\(AN=\sqrt{AD^2+DN^2}=\sqrt{(2a)^2+(\frac{3a}{2})^2}=\frac{5}{2}a\)
Đáp án A
có góc ABC là góc tù vì 360-90-90-60=120
vậy CM \(\ge\)BC
vậy độ dài đoạn CM hay đọ dài vecto CM nhỏ nhất khi bằng BC
khi đó min(CM)=?
từ B hạ chân đường vuống góc xuống CD
khi đó ta dễ tính ra được BC=2a
từ C hà đường vuông góc tới AB
khi đó \(|\overrightarrow{CM}|^2\)=CM^2 = CH^2 + HM^2
vì CH không đổi nên ta không tính đến nó
có HM bé hơn hoặc bằng HA
vậy AC>= CM
vậy max(CM)=AC=\(2\sqrt{2}a\)
Chọn D.
Phương án A: = AB.DC.cos00
= 8a2 nên loại A.
Phương án B: suy ra nên loại B.
Phương án C: suy ra nên loại C.
Phương án D: không vuông góc với suy ra nên chọn D.