K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2021

Diện tích hình thang là

S = \(\dfrac{1}{2}.\left(5+3\right).4\)= 16(cm2)

Đáp số : 16 cm2

11 tháng 4 2021

Diện tích hình thang là

S = 12.(5+3).412.(5+3).4= 16(cm2)

Đáp số : 16 cm2

  
Câu 1:  a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm Câu 3: a) Cho D ABC ∽ D MNI. BiếtAˆA^= 800;NˆN^= 300. TínhCˆC^  b) Cho DABD DBDC, viết các cặp góc tương ứng...
Đọc tiếp

Câu 1:  

a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. 

b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm 

c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm 

Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm 

Câu 3: a) Cho D ABC ∽ D MNI. Biết

AˆA^

= 800;

NˆN^

= 300. Tính

CˆC^

 

 

b) Cho DABD DBDC, viết các cặp góc tương ứng bằng nhau của hai tam giác đã cho.   

Câu 4: Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Lấy N thuộc AC sao cho AN = 3cm. Chứng minh MN // BC. 

Câu 5: Cho tam giác ABC vuông tại A có AB = 12cm, AC = 15cm. Vẽ AM là tia phân giác của góc A (M thuộc BC). Biết BM = 8cm. Tính NC? 

Câu 6 : Cho có AB = 3cm, AC = 4,5cm, BC = 6cm. có DE= 12cm, EF=9cm, DF = 6cm. Chứng minh 

Câu 7: a) Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Biết MN // BC. Tính MN?  

b) Cho tam giác ABC có AB = 15cm, AC = 18cm. Trên AB lấy điểm M sao cho AM = 12cm, qua điểm M kẻ đoạn thẳng MN//BC. Tính độ dài đoạn thẳng AN? 

Câu 8:Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Kẻ MN song song với BC (NAC). Tính AN? 

Câu 9 : H.thang ABCD(AB//CD) có AB = 6cm, CD = 24cm, BD = 12cm. Chứng minh: DABDDBDC. 

Câu 10 : Cho nhọn. Trên cạnh Ox, đặt các đoạn thẳng OA = 6cm, OB = 18cm. Trên cạnh Oy, đặt các đoạn thẳng OC = 9cm, OD = 12cm.Chứng minh hai tam giác OAD và OCB  đồng dạng. 

Câu 11: Cho có MN = 6cm; MP = 8cm;  

NP = 12cm. Hai tam giác ABC và MNP có đồng dạng không? Vì sao?  

Câu 12: Cho góc nhọn xAy, trên tia Ax đặt hai đoạn thẳng AM = 10cm và AB = 12cm. Trên tia Ay đặt hai đoạn thẳng AN = 8cm và AC = 15cm. BN cắt CM tại H 

Chứng minh đồng dạng với   

Chứng minh    

1

Câu 11:

Xét ΔABC và ΔMNP có

\(\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}\left(=\dfrac{1}{2}\right)\)

Do đó: ΔABC~ΔMNP

Câu 12:

a: Xét ΔAMC và ΔANB có

\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\left(\dfrac{10}{8}=\dfrac{15}{12}\right)\)

\(\widehat{MAC}\) chung

Do đó: ΔAMC đồng dạng với ΔANB

b: Ta có: ΔAMC đồng dạng với ΔANB

=>\(\widehat{ACM}=\widehat{ABN}\)

Xét ΔHMB và ΔHNC có

\(\widehat{HBM}=\widehat{HCN}\)

\(\widehat{MHB}=\widehat{NHC}\)(hai góc đối đỉnh)

Do đó; ΔHMB đồng dạng với ΔHNC

=>\(\dfrac{HB}{HC}=\dfrac{BM}{CN}\)

=>\(HB\cdot CN=BM\cdot CH\)

Câu 10:

Xét ΔOAD và ΔOCB có

\(\dfrac{OA}{OC}=\dfrac{OD}{OB}\)

góc O chung

Do đó: ΔOAD~ΔOCB

14 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.

Vì AB // CD ⇒ ∠ (ABC) = 180 0 ⇒ A, B, E thẳng hàng

∠ (ABF) +  ∠ (DFC) =  180 0

⇒ D, F, E thẳng hàng

△ DFC = △ EFB (g.c.g)

S D F C = S E F B

Suy ra: S A B C D = S A D E

△ DFC =  △ EFB⇒ DC = BE

AE = AB + BE = AB + DC

S A D E  = 1/2 DH. AE = 1/2 DH. (AB + CD)

Vậy : S A B C D = 1/2 DH. (AB + CD)

10 tháng 5 2019

Đáp án cần chọn là: A.

Ta có tam giác ADH vuông cân tại H vì D ^  = 45 ° .

Do đó DH = AH = 5cm

Mà DH = 1 2 (CD – AB)

Suy ra CD = 2DH + AB = 2.5 + 3 = 13 (cm)

Vậy CD = 13 cm

5 tháng 1 2022

CỨA

GV
29 tháng 4 2017

A B C D E M h N

Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.

Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)

b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.

kẻ BK\(\perp\)DC

Xét ΔAHD vuông tại H có \(tanD=\dfrac{AH}{HD}\)

=>\(\dfrac{5}{HD}=tan45=1\)

=>HD=5/1=5(cm)

Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

\(\widehat{D}=\widehat{C}\)

Do đó: ΔAHD=ΔBKC

=>DH=KC

mà DH=5cm

nên KC=5cm

Ta có: AB//DC

\(H,K\in DC\)

Do đó: AB//HK

Ta có: AH\(\perp\)DC

BK\(\perp\)DC

Do đó: AH//BK

Xét tứ giác ABKH có

AB//KH

AH//BK

Do đó: ABKH là hình bình hành

=>AB=HK=3cm

DC=DH+HK+KC

=5+5+3

=13(cm)

9 tháng 12 2023

THậu sự cảm ơn

26 tháng 12 2017

Bạn tự vẽ hình nha ( hình nó dễ )

Gọi F là trung điểm của BC. Cắt hình thang theo đường DF đưa ghép vềnhư hình vẽ, điểm C trùng với điểm B , điểm D trùng với điểm E 

Vì AB // CD \(\Rightarrow\)\(\widehat{ABC}+180\)độ \(\Leftrightarrow\)A ; B ; E thẳng hàng

\(\widehat{ABF}+\widehat{DFC}=180\)độ

\(\Rightarrow\)D ; F ; E thẳng hàng

\(\Delta DFC=\Delta EFB\left(g-c-g\right)\)

Diện tích DFC = diện tích EFB

\(\Rightarrow\)Diện tích ABCD = diện tích ADE

\(\Delta DFC=\Delta EFB\left(cmt\right)\)

DC = BE

AE = AB + BE = AB + CD 

Diện tích ADE = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)

Vậy diện tích ABCD = \(\frac{1}{2}DH.AE=\frac{1}{2}DH.\left(AB+CD\right)\)