K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

AB // CD (gt) nên \(\widehat{A}+\widehat{D}=180^0\)

Mà \(\widehat{A}=\widehat{B}\Rightarrow\widehat{B}+\widehat{D}=180^0\)

Do đó: ABCD là tứ giác nội tiếp nên có 1 đường tròn đi qua cả 4 đỉnh A,B,C,D 

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH . 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo...
Đọc tiếp

7. Cho đường tròn tâm O đường kính AB = 53 cm . C là một điểm trên đường tròn sao cho AC = 45 cm . Gọi H là hình chiếu của C trên AB . Tính BC , AH , BH , CH và OH .

 8. Cho hình thang cân ABCD có đáy lớn AB = 15 cm , đáy nhỏ CD = 5 cm và góc A bằng 60 ° . a ) Tính cạnh BC . b ) Gọi M , N lần lượt là trung điểm của AB và CD , Tỉnh MN .

9 , Cho tứ giác ABCD có AI ACAD 20 cm , ốc B bằng ( 6 ) " VỀ VỐc A bằng , ly , a ) Tính đường chéo BD , b ) Tính khoảng cách B và DK từ hai điểm B và D đến AC . c ) Tính HK , d ) Vẽ BE vuông gốc với DC kéo dài . Tính BE , CE , DC

10. Cho đoạn thẳng AB 2a . Từ trung điểm 0 của AB về Ox vuông vỐC với AB . Trên 9x a lấy điểm D sao cho OD Tu B ve BC 2 vuông góc với AD kéo dài , a ) Tính AD , AC và BC theo a , b ) Kéo dài DO một đoạn OE = a , Chứng minh bốn điểm A , C , B , E cùng nằm trên một đường tròn . c ) Vẽ đường vuông góc với BC tại B cắt CE tại F. Tính BF . d ) Gọi P là giao điểm của AB và CE , Tính AP và BP .

11.Cho tam giác ABC cân tại A có BC 16 cm , AH = 6 cm . Về điểm D trên đoạn BH sao cho BD = 3,5 cm . Chứng minh rằng tam giác DAC vuông .

0

Vì ABCD là hình thang cân

nên góc A+góc D=180 độ và góc A=góc B

=>góc B+góc D=180 độ

=>ABCD là tứ giác nội tiếp

Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5

18 tháng 10 2017

a) tính đường cao AH: 
xét tam giác DHA vuông tại H có sin góc DAH = DH/AD 
=>DH=AD. sin65 
Từ đó suy ra AH theo pitago 
hạ đường cao CE từ C xuống cạnh AB 
KHi đó CD=EH=AB - 2AH 
b)góc ABD chính là góc HBD trong tam giác HBD vuông tại H 
=>tan HBD= DH/HB=DH/(AB-AH) 
=>góc HBD 
Tính đường chéo BD theo pitago trong tgiac DHBvuông tại H

a) tính đường cao AH: 
xét tam giác DHA vuông tại H có sin góc DAH = DH/AD 
=>DH=AD. sin65 
Từ đó suy ra AH theo pitago 
hạ đường cao CE từ C xuống cạnh AB 
KHi đó CD=EH=AB - 2AH 
b)góc ABD chính là góc HBD trong tam giác HBD vuông tại H 
=>tan HBD= DH/HB=DH/(AB-AH) 
=>góc HBD 
Tính đường chéo BD theo pitago trong tgiac DHBvuông tại H