K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì ABCD là hình thang cân

nên góc A+góc D=180 độ và góc A=góc B

=>góc B+góc D=180 độ

=>ABCD là tứ giác nội tiếp

6 tháng 10 2018

AB // CD (gt) nên \(\widehat{A}+\widehat{D}=180^0\)

Mà \(\widehat{A}=\widehat{B}\Rightarrow\widehat{B}+\widehat{D}=180^0\)

Do đó: ABCD là tứ giác nội tiếp nên có 1 đường tròn đi qua cả 4 đỉnh A,B,C,D 

18 tháng 10 2017

a) tính đường cao AH: 
xét tam giác DHA vuông tại H có sin góc DAH = DH/AD 
=>DH=AD. sin65 
Từ đó suy ra AH theo pitago 
hạ đường cao CE từ C xuống cạnh AB 
KHi đó CD=EH=AB - 2AH 
b)góc ABD chính là góc HBD trong tam giác HBD vuông tại H 
=>tan HBD= DH/HB=DH/(AB-AH) 
=>góc HBD 
Tính đường chéo BD theo pitago trong tgiac DHBvuông tại H

a) tính đường cao AH: 
xét tam giác DHA vuông tại H có sin góc DAH = DH/AD 
=>DH=AD. sin65 
Từ đó suy ra AH theo pitago 
hạ đường cao CE từ C xuống cạnh AB 
KHi đó CD=EH=AB - 2AH 
b)góc ABD chính là góc HBD trong tam giác HBD vuông tại H 
=>tan HBD= DH/HB=DH/(AB-AH) 
=>góc HBD 
Tính đường chéo BD theo pitago trong tgiac DHBvuông tại H

Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5

1 tháng 7 2019

A B D C H K M N 60

a) Hạ đường cao CH và DK. 

=> DK//CH

và DC//HK

=> DCHK là hình bình hành có \(\widehat{H}=90^o\)

=> DCHK là hình chữ nhật

=> HK=DC =10cm

Xét tam giác DAK= tam giác CBH có:

\(\widehat{H}=\widehat{K}=90^o\), AD=CB ( ABCD là hình thang cân)

và \(\widehat{A}=\widehat{B}\)( ABCD là hình thang cân )

=> BH=AK =(AB-HK):2=10 cm

Xét tam giác CBH  vuông tại H và có góc B bằng 60 độ

=> góc C bằng 30 độ

=> BC=2BH=20 cm

b ) N là trung điểm AB

=> N là trung điểm HK

=> MN=CH=\(\sqrt{20^2-10^2}=10\sqrt{3}\) (cm)