K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 1 2016
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
B
24 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Hình vẽ:
Giải:
Kẻ đường cao AK và đường cao BH xuống cạnh CD
Tứ giác ABED có: EB // AD (gt) và AB // CD => AB // DE
=> ABED là hbh
=> AB = DE; AD = BE
mà AD = BC => BE = BC => tam giác BCE cân tại B
=> BH vừa là đường cao vừa là đường trung tuyến
=> HC = HE = \(\dfrac{EC}{2}=\dfrac{44-28}{2}=8\left(cm\right)\)
Áp dụng định lí Pytago vào tam giác vuông BEH có:
\(BE^2=BH^2+HE^2\Rightarrow BH=\sqrt{BE^2-HE^2}=\sqrt{289-64}=15\left(cm\right)\)
=> AK = 15 (cm)
Có: \(EK=CD-DK-EH-CH=44-8-8-8=20\)(cm)
Áp dụng Pytago vào tam giác AKE vuông tại K có:
\(AE^2=AK^2+EK^2\Rightarrow AE=\sqrt{15^2+20^2}=25\left(cm\right)\)
Vậy AE = 25 (cm)
AE=17cm