K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

 Kẻ BE // AD (E thuộc CD) ---> ^BEC = ^ADC = 60* 
ABED là hình bình hành ---> DE = 2 ---> EC = 4 căn 3 
Tam giác BEC có ^BEC = 60*; ^BCE = 30* nên nó bằng nửa tam giác đều 
---> BE = EC/2 = 2 căn 3 
Gọi BH là đường cao hình thang. 
Tam giác BEH cũng là nửa tam giác đều (vì ^BEH = 60*; ^BHE = 90*) 
---> EH = BE/2 = căn 3 
---> BH^2 = BE^2 - EH^2 = 12 - 3 = 9 ---> BH = 3 (cm) 
Trả lời : 3 cm.

29 tháng 12 2015

duyên ghê he mới lớp 6 mà làm đc lớp 7 giỏi ha coppy nhanh thật 

19 tháng 6 2017

A B C D O

xét hình thang cân ABCD có AB//CD(gt)

\(\Rightarrow\)^CDA=^BAO(2 góc đồng vị) và ^DCB=^ABO

Do ABCD là hìng thang cân nên ^CDA=^DCB

nên ^BAO=^ABO

Xét tam giác ABO có

^BAO=^ABO nên tam giác ABO cân(đpcm)

3 tháng 7 2019

VÌ hình  thang cân 

=> AC= BD 

Kẻ đường cao BK của hình thang ta co

HK=AB= 14cm

=> KD=CH=(24-14):2=5 cm

Tam giác ACH vuông tại H có 

\(AC^2=CH^2+AH^2\) ( định lý Py- ta -go )

\(AC^2=5^2+12^2\)

AC=13cm

Chu vi hình thang là AB+BD+AC+DC =14+24+13+13=64cm

Diện tích hình thang là 

S=\(\frac{\left(14+24\right)\times12}{2}=228cm^2\)

25 tháng 6 2021

Bài 1 :  A B C D 4

Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)

\(\Rightarrow AB=BC=CD=AD=4\)cm 

Áp dụng định lí pytago tam giác ADC vuông tại D ta có : 

\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm 

Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm 

25 tháng 6 2021

Bài 2 : 

A B C D 3 căn27

Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)

Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :

 \(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm 

18 tháng 3 2021

Giúp mình với, mình cảm ơn!😢

18 tháng 3 2021

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

11 tháng 2 2016

moi hok lop 6 thoi