Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ BE // AD (E thuộc CD) ---> ^BEC = ^ADC = 60*
ABED là hình bình hành ---> DE = 2 ---> EC = 4 căn 3
Tam giác BEC có ^BEC = 60*; ^BCE = 30* nên nó bằng nửa tam giác đều
---> BE = EC/2 = 2 căn 3
Gọi BH là đường cao hình thang.
Tam giác BEH cũng là nửa tam giác đều (vì ^BEH = 60*; ^BHE = 90*)
---> EH = BE/2 = căn 3
---> BH^2 = BE^2 - EH^2 = 12 - 3 = 9 ---> BH = 3 (cm)
Trả lời : 3 cm.
duyên ghê he mới lớp 6 mà làm đc lớp 7 giỏi ha coppy nhanh thật
VÌ hình thang cân
=> AC= BD
Kẻ đường cao BK của hình thang ta co
HK=AB= 14cm
=> KD=CH=(24-14):2=5 cm
Tam giác ACH vuông tại H có
\(AC^2=CH^2+AH^2\) ( định lý Py- ta -go )
\(AC^2=5^2+12^2\)
AC=13cm
Chu vi hình thang là AB+BD+AC+DC =14+24+13+13=64cm
Diện tích hình thang là
S=\(\frac{\left(14+24\right)\times12}{2}=228cm^2\)
Bài 1 : A B C D 4
Vì ABCD là hình vuông \(\Rightarrow\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{CDA}=90^0\)
\(\Rightarrow AB=BC=CD=AD=4\)cm
Áp dụng định lí pytago tam giác ADC vuông tại D ta có :
\(AC^2=AD^2+CD^2=16+16=32\Rightarrow AC=4\sqrt{2}\)cm
Vì ABCD là hình vuông nên 2 đường chéo bằng nhau AC = BD = 4\(\sqrt{2}\)cm
Bài 2 :
A B C D 3 căn27
Vì ABCD là hình chữ nhật nên \(AB=CD;AD=BC\)
Áp dụng định lí Pytago tam giác ACD vuông tại D ta có :
\(AC^2=AD^2+DC^2=27+9=36\Rightarrow AC=6\)cm
a, Xét tam giác HBA vuông tại H có:
AB2=AH2+BH2(định lí py ta go)
hay 100=AH2+36
=> AH2=64
=> AH=8(cm)
b, Xét tam giác ABH và tam giác ACH có:
góc AHB=góc AHC =90 độ
AB=AC (tam giác ABC cân tại A)
AH chung
=> tam giác ABH = tam giác ACH
c,
Xét tam giác DBH và tam giác ECH có:
BD=CE (gt)
góc DBH= góc ECH (tam giác ABC Cân tại A)
BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)
=> tam giác DBH=tam giác ECH
=> DH=EH( 2 cạnh tương ứng)
=> tam giác HDE cân tại H
d) Vì AB = AC; BD = CE
mà AB - BD = AD
AC - CE = AE
=> AD = AE
Vì ΔHDE cân
=> H ∈ đường trung trực cạnh DE (1)
Xét ΔADHvàΔAEHcó
AD = AE (cmt)
AH (chung)
DH = HE (cmt)
Do đó: ΔADH=ΔAEH(c−c−c)
=> AD = AE ( hai cạnh tương ứng)
=> ΔADE cân tại A
=> A ∈ đường trung trực cạnh DE (2)
(1); (2) => A,H ∈ đường trung trực cạnh DE
=>AH là đường trung trực cạnh DE
CHÚC BẠN HỌC TỐT