Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ BE // AD (E thuộc CD) ---> ^BEC = ^ADC = 60*
ABED là hình bình hành ---> DE = 2 ---> EC = 4
Tam giác BEC có ^BEC = 60*; ^BCE = 30* nên nó bằng nửa tam giác đều
---> BE = EC/2 = 2
Gọi BH là đường cao hình thang.
Tam giác BEH cũng là nửa tam giác đều (vì ^BEH = 60*; ^BHE = 90*)
---> EH = BE/2 = 1
---> BH^2 = BE^2 - EH^2 = 2^2 - 1 = 3 ---> BH =√ 3 (cm)
Trả lời : √3 cm.
AB // CD (gt) nên \(\widehat{A}+\widehat{D}=180^0\)
Mà \(\widehat{A}=\widehat{B}\Rightarrow\widehat{B}+\widehat{D}=180^0\)
Do đó: ABCD là tứ giác nội tiếp nên có 1 đường tròn đi qua cả 4 đỉnh A,B,C,D
a: Xét ΔADB và ΔBCA có
AD=BC
DB=CA
AB chung
Do đó: ΔADB=ΔBCA
Suy ra: \(\widehat{ADB}=\widehat{BCA}\)
\(\Leftrightarrow\widehat{BCA}=90^0\)
hay CA\(\perp\)BC
b: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn
Tâm là I
\(a,\) Sửa: ABCD là hình thang cân
Vì \(\left\{{}\begin{matrix}AD=BC\\BD=CA\\AB.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta BCA\left(c.c.c\right)\)
\(\Rightarrow\widehat{ADB}=\widehat{ACB}=90\\ \Rightarrow CA\perp BC\)
\(b,\) Vì \(\widehat{ADB}=\widehat{ACB}\left(=90\right)\) nên ABCD nội tiếp đường tròn tâm I
Mik ghi ý th, bạn tự giải chi tiết nha
a)Vẽ BE//AD,BH vuông góc CD.
CM đc ABED là hình bình hành => DE=2,EC=4
Tam giác BEC vuông tại B và có góc C =30 nên BE=EC:2=4:2=2
=>AD=BE=2
b)
Tam giác BEH vuông tại H có EBH=30 =>EH=BE/2=2:2=1
Dùng định lý PTG ta tính đc đường cao rồi tính đc diện tích nha.