K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

2) Gọi giao điểm của AC và BD là O.
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà góc AOB = 600

 \(\Rightarrow\) AOB là tam giác đều,  COD là tam giác đều

Mặt khác:     BM là đường cao của tam giác AOB nên BM cũng là trung tuyến \(\Rightarrow\)MA = MO
                   CN là đường cao của tam giác COD nên CN cũng là trung tuyến \(\Rightarrow\) NO = ND
Tam giác AOD có: MA = MO, NO = ND \(\Rightarrow\)\(MN=\frac{AD}{2}\)
Tam giác BMC vuông tại M có MP là trung tuyến  \(\Rightarrow\) \(MP=\frac{BC}{2}=\frac{AD}{2}\)
Tam giác BNC vuông tại N có NP là trung tuyến  \(\Rightarrow\) \(NP=\frac{BC}{2}=\frac{AD}{2}\)
Do đó:      \(MN=MP=NP\)        \(\Rightarrow\)đpcm

25 tháng 5 2019

tui có nick

5 tháng 10 2021

Gọi giao điểm của AC và BD là O
Vì ABCD là hình thang cân nên tam giác AOB cân tại O mà  ˆAOB=600⇒AOB^=600⇒ tam giác AOB đều, ta giác COD đều
Mặt khác: 
BM là đường cao của tam giác AOB nên BM cũng là trung tuyến ⇒⇒ MA=MO
CN là đường cao của tam giác COD nên cn cũng là trung tuyến NO=ND
Tam giác AOD có: MA=MO, NO=ND MN=AD/2
Tam giác BMC vuông tại M có MP là trung tuyến nên \(MP=\frac{BC}{2}=\frac{AD}{2}\)
Tam giác BNC vuông tại N có NP là trung tuyến nên \(NP=\frac{BC}{2}=\frac{AD}{2}\)
Do đó: MN=NP=MP

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI