Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M là trung điểm của AB
=>\(MA=MB=\dfrac{AB}{2}\)
mà \(CD=\dfrac{AB}{2}\)
nên MA=MB=CD
Xét tứ giác AMCD có
AM//DC
AM=DC
Do đó: AMCD là hình bình hành
Xét tứ giác DCBM có
DC//BM
DC=BM
Do đó: DCBM là hình bình hành
b: DCBM là hình bình hành
=>DM//CB
=>\(\widehat{AMD}=\widehat{CBM}\)(hai góc đồng vị)
mà \(\widehat{CBM}=\widehat{ECD}\)(hai góc đồng vị, DC//AB)
nên \(\widehat{DMA}=\widehat{ECD}\)
Xét ΔEAB có DC//AB
nên \(\dfrac{ED}{EA}=\dfrac{DC}{AB}=\dfrac{1}{2}\)
=>\(ED=\dfrac{1}{2}EA\)
=>D là trung điểm của EA
=>ED=DA
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cho ai ko đọc đc câu hỏi thì:
a) cmr tam giác ABD = tam giác AEC
B) cm tứ giác BCDE là hình thang cân có đáy nhỏ bằng cạnh bên
C) cho góc A = 40 độ. Tính các góc còn lại của hình thang cân BCDE
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b:ΔABD=ΔACE
=>AD=AE
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có
DE//BC
góc EBC=góc DCB
=>BEDC là hình thang cân
ED//BC
=>góc EDB=góc DBC
=>góc EDB=góc EBD
=>ED=EB
BEDC là hình thang cân
=>EB=DC
=>EB=ED=DC
c: góc EBC=góc DCB=(180-40)/2=70 độ
góc BED=góc EDC=180-70=110 độ
Bài 3:
Xét ΔCBD có CD=CB
nên ΔCBD cân tại C
Suy ra: \(\widehat{CDB}=\widehat{CBD}\)
mà \(\widehat{CDB}=\widehat{ADB}\)
nên \(\widehat{ADB}=\widehat{DBC}\)
mà hai góc này ở vị trí so le trong
nên AD//BC
hay ADCB là hình thang
mn đang cần gấp
\(\widehat{B}=36^0\)
\(\widehat{E}=144^0\)