Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: E là trung điểm của AD
F là trung điểm của BC
AB//CD
=) EF//DC//AB (1)
Xét tam giác ADB có AE=ED =) EK là đường trung bình của tam giác ADB =) EK//AB(2)
Xét tam giác BDC có BF=FC =) FI là đường trung bình của tam giác BDC =) FI//AB (3)
Từ (1) (2) (3) =) EK,FI,EF//AB
=) E;F;K thẳng hàng
Xét ht ABCD,ta có:
E là t/đ của AD
K là t/đ của BC
=>EK là đường trung bình hình thang ABCD
=>EK // CD
Xét tam giác BDC,ta có:
K là t/đ của BC
F là t/đ của BD
=>FK là đường trung bình trong tam giác BDC
=>FK // CD
Vậy FK //EK (cùng // CD)
=> 3 điểm E,K,F thẳng hàng
a: Xét ΔDAB có
E là trung điểm của AD
K là trung điểm của DB
Do đó:EK là đường trung bình của ΔDAB
Suy ra: EK//AB và \(EK=\dfrac{AB}{2}\left(1\right)\)
hay EK//CD
Xét ΔCAB có
I là trung điểm của AC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔCAB
Suy ra: IF//AB và \(IF=\dfrac{AB}{2}\left(2\right)\)
Từ (1) và (2) suy ra EK=IF
b: Hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Ta có: EF//AB
mà FI//AB
và EF,FI có điểm chung là F
nên E,F,I thẳng hàng(3)
Ta có: EF//AB
mà EK//AB
và EF,EK có điểm chung là E
nên E,F,K thẳng hàng(4)
Từ (3) và (4) suy ra E,K,I,F thẳng hàng
+ ΔABD có DE = EA và DK = KB
⇒ EK là đường trung bình của ΔDAB
⇒ EK // AB
+ Hình thang ABCD có: AE = ED và BF = FC
⇒ EF là đường trung bình của hình thang ABCD
⇒ EF // AB// CD
+ Qua điểm E ta có EK // AB và EF // AB nên theo tiên đề Ơclit ta có E, K, F thẳng hàng.
Xét ΔDAB có
E là trung điểm của AD
K là trung điểm của BD
Do đó: EK//AB
hay EK//CD
Xét ΔBDC có
K là trung điểm của BD
F là trung điểm của BC
Do đó: KF là đường trung bình của ΔBDC
Suy ra: KF//DC
Ta có: EK//DC
KF//DC
mà KE và KF có điểm chung là K
nên E,K,F thẳng hàng
* Hình thang ABCD có AB // CD
E là trung điểm của AD (gt)
F là trung điểm của BC (gt)
Nên EF là đường trung bình của hình thang ABCD
EF // CD (tỉnh chất đưòng trung bình hình thang) (1)
* Trong ∆ ADC ta có:
E là trung điểm của AD (gt)
I là trung điểm của AC (gt)
Nên EI là đường trung bình của ∆ ADC
⇒ EI // CD (tính chất đường trung bình tam giác) (2)
Từ (1) và (2) và theo tiên đề ƠClít ta có đường thẳng EF và EI trùng nhau. Vậy E, F, I thẳng hàng
Ta có E và F là trung điểm của AD và BC
=> EF là ĐTB của hình thang ABCD
=> EF//AB//CD
Do F,K là trung điểm cuả BD và BC
=> FK là ĐTB của tam giác ADC
=> FK//CD
Do E và K là trung điểm của AD và BD
=> EK là ĐTB của tam giác ABD
=> EK//AB
Mà AB//CD
=>EF ; EK ; FK cùng // với AB
=> E ; F ; K thẳng hàng
Bài giải:
Ta có EA = ED, KB = KD (gt)
Nên EK // AB
Lại có FB = FC, KB = KD (gt)
Nên KF // DC // AB
Qua K ta có KE và KF cùng song song với AB nên theo tiên đề Ơclit ba điểm E, K, F thẳng hàng.
\(\Delta ADB\) có:\(AE=DE\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow AB\) // \(EF\)(theo đlí 2 về đường trung bình của tam giác) (1)
\(\Delta BDC\) có:\(BK=KC\left(gt\right),BF=FD\left(gt\right)\)
\(\Rightarrow FK\) // \(CD\)(theo đlí 2 về đường trung bình của tam giác)
Mà \(CD\) // \(AB\Rightarrow FK\) // \(AB\) (1)
Từ (1) và (2), suy ra:
\(AB\) // \(EF,FK\)
\(\Rightarrow E,F,K\) thẳng hàng (theo tiên đề Ơclit )