Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
hay AH⊥BC
b: Sửa đề: M là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HM là đường trung tuyến
nên HM=AM=AC/2
Xét ΔMAO và ΔMHO có
MA=MH
MO chung
OA=OH
Do đó: ΔMAO=ΔMHO
Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)
hay HM là tiếp tuyến của (O)
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
câu c hình như bn nhầm đỉnh tứ giác thì phải
d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé